CECS 528, Learning Outcome Assessment 6 (Version b), March 10th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO1. Recall the use of the disjoint-set data structure for the purpose of improving the running time of the Unit Task Scheduling UTS algorithm. For the set of tasks

Task	a	b	c	d	e	f
Deadline	3	2	1	0	4	2
Profit	60	50	40	30	20	10

For each task, show the M-Tree forest after it has been inserted (or at least has attempted to be inserted in case the scheduling array is full). Notice that the earliest deadline is 0 , meaning that the earliest slot in the schedule array has index 0 . Hint: to receive credit, your solution should show six different snapshots of the M-Tree forest.

LO2. The following pertains to a correctness-proof outline for the Unit Task Scheduling (UTS) algorithm. Let $S=\left(a_{1}, t_{1}\right), \ldots,\left(a_{m}, t_{m}\right)$ represent the tasks that were selected by the algorithm for scheduling, where a_{i} is the task, and t_{i} is the time that it is scheduled to be completed, $i=1, \ldots, m$. Moreover, assume that these tasks are ordered in the same order for which they appear in the sorted order. Let $S_{\text {Opt }}$ be an optimal schedule which also consists of task-schedule-time pairs. Let k be the first integer for which $\left(a_{1}, t_{1}\right), \ldots,\left(a_{k-1}, t_{k-1}\right)$ are in S_{opt}, but $\left(a_{k}, t_{k}\right) \notin S_{\text {opt }}$ because a_{k} was not scheduled by $S_{\text {opt }}$.
(a) How do we know that $S_{\text {opt }}$ must have a task a scheduled at t_{k} ? Hint: what contradiction arises in case time t_{k} is not being utilized?
(b) What contradiction arises when we assume that a comes before a_{k} in the UTS ordering? Hint: there are two cases.

LO3. An algorithm has a running time $T(n)$ that satisfies $T(n)=7 T(n / 2)+n^{2}$. Professor Hu is considering an alternative algorithm whose running time $S(n)$ would satisfy $S(n)=a S(n / 5)+$ n^{2} what is the largest value of a that can be used and still have $S(n)=o(T(n))$? Explain and show work.

LO4. Recall that the Minimum Positive Subsequence Sum (MPSS) problem (Exercise 36) admits a divide-and-conquer algorithm that, on input integer array a, requires computing the mpss of any subarray of a that contains both $a[n / 2-1]$ and $a[n / 2]$ (the end of $a_{\text {left }}$ and the beginning of $a_{\text {right }}$. For

$$
a=48,-37,29,-33,51,-64,46,-34,45,-36
$$

(a) Provide the two sorted arrays a and b from which the minimum positive sum $a[i]+b[j]$ represents the desired mpss, for some i in the index range of a and some j within the index range of b.
(b) For the a and b in part a, demonstrate how the minimum positive sum $a[i]+b[j]$ may be computed in $\mathrm{O}(n)$ steps.

LO5. Given that $r=a e+b g, s=a f+b h, t=c e+d g$, and $u=c f+d h$ are the four entries of $A B$, and Strassen's products are obtained from matrices

$$
\begin{gathered}
A_{1}=a, B_{1}=f-h, A_{2}=a+b, B_{2}=h, A_{3}=c+d, B_{3}=e, A_{4}=d, B_{4}=g-e, \\
A_{5}=a+d, B_{5}=e+h, A_{6}=b-d, B_{6}=g+h, A_{7}=a-c, B_{7}=e+f,
\end{gathered}
$$

Compute P_{1}, \ldots, P_{7} and use them to compute r, s, t, and u.

