CECS 528, Learning Outcome Assessment 6 (Version a), March 10th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO2. Recall the use of the disjoint-set data structure for the purpose of improving the running time of the UTS algorithm. For the set of tasks

Task	a	b	c	d	e	f
Deadline	4	0	1	4	4	4
Profit	60	50	40	30	20	10

For each task, show the M-Tree forest after it has been inserted (or at least has attempted to be inserted in case the scheduling array is full). Notice that the earliest deadline is 0 , meaning that the earliest slot in the schedule array has index 0 . Hint: to receive credit, your solution should show six different snapshots of the M-Tree forest.

LO3. Answer the following with regards to a correctness-proof outline for the Fractional Knapsack algorithm.
(a) Assume $x_{1}, x_{2}, \ldots, x_{n}$ is an ordering of the items in decreasing order of profit density (i.e. profit per unit weight). Let f_{i} denote the fraction of item i that the FK-algorithm adds to the knapsack. Which of the following is a possible sequence for $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$?
I. $1,1,0.5,0.3$
II. $1,1,0.4$
III. $0,0,0.3,1,1$
IV. $0.25,1,1$
(b) Let $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}$ be a sequence of fractions that optimizes total profit, and assume that $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$. Explain why, in this case, it must be true that $f_{k}^{\prime}<f_{k}$. Hint: in relation to the FKA algorithm, what is the contradiction in case the opposite was true?
(c) For the scenario described in part b , if $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$, then what is the relationship between d_{k} the profit density of x_{k}, and d_{k+1}, the profit density of x_{k+1} ?
Explain.
LO4. Given $T_{1}(n)=27 T_{1}(n / 3)+n^{3}$, and $T_{2}(n)=a T_{2}(n / 4)+n^{2}$ what is the greatest possible value that a can assume, and still have $T_{2}(n)=o\left(T_{1}(n)\right)$? Show work and explain.

LO5. Recall that the Maximum Subsequence Sum (MSS) problem (Exercise 34) admits a divide-and-conquer algorithm that, on input integer array a, requires computing the maximum of $\operatorname{MSS}_{\text {left }}(a), \operatorname{MSS}_{\text {right }}(a)$, and $\operatorname{MSS}_{\text {mid }}(a)$. If the array is

$$
a=4,-2,5,-8,4,2,-1,3,-8,7
$$

then
(a) Provide $\mathrm{MSS}_{\text {left }}(a), \mathrm{MSS}_{\text {right }}(a)$. Hint: no need to show work!
(b) Provide the two arrays of sums, $\mathrm{Sum}_{\text {left }}$ and $\mathrm{Sum}_{\text {right }}$ that are used to compute $\mathrm{MSS}_{\text {mid }}(a)$. Explain how to compute $\mathrm{MSS}_{\text {mid }}(a)$ from these two arrays.

LO6. Recall that the find_statistic algorithm makes use of Quicksort's partitioning algorithm and uses a pivot that is guaranteed to have at least

$$
3\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rfloor-2\right) \geq 3\left(\frac{1}{2} \cdot \frac{n}{5}-3\right)=\frac{3 n}{10}-9 \geq n / 4
$$

members of a on both its left and right sides, assuming $n \geq 200$.
(a) Rewrite all three inequalities/equalities with updated constants, assuming that the algorithm now uses groups of 9 instead of groups of 5 . Also, provide a replacement for the inequality $n \geq 200$. Show all work.
(b) Give the rationale for how you decided to replace the 3 on the left side of the very first inequality.

