CECS 528, Learning Outcome Assessment 5 (Version b), March 3rd,

 Spring 2023, Dr. EbertNO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO1. Determine the growth of the function

$$
S(n)=\log 1+2 \log 2+\cdots+n \log n .
$$

Show all work.
LO2. The tree below shows the state of the binary min-heap at the beginning of some round of Dijkstra's algorithm, applied to some weighted graph G. If G has directed edges

$$
(c, e, 7),(c, f, 3),(c, g, 6),(c, p, 2),(f, c, 2)
$$

then draw a plausible state of the heap at the end of the round.

LO3. Answer the following with regards to a correctness-proof outline for the Task Selection aldorithm.
(a) Let $S=t_{1}, \ldots, t_{m}$ be the set of non-overlapping tasks selected by TSA and sorted by finish time, i.e. $f\left(t_{i}\right)<f\left(t_{i+1}\right)$ for all $i=1, \ldots, m-1$. Let $S_{\text {opt }}$ be an optimal set of tasks and assume that, for some $k \geq 1, t_{1}, \ldots, t_{k} \in S_{\mathrm{opt}}$, but $t_{k+1} \notin S_{\mathrm{opt}}$. Let $t^{\prime} \in S_{\mathrm{opt}}$ be the earliest task that follows t_{k}. What can we say about the relationship between $f\left(t_{k+1}\right)$ and $f\left(t^{\prime}\right)$? Justify your answer.
(b) Suppose we have established the existence of an optimal set of tasks $S_{\text {opt }}$ such that $S \subseteq S_{\text {opt }}$. To finish the proof, we must show that there cannot be a task in $S_{\text {opt }}$ that is not in S. As a step in this direction, explain why there can be no task $t \in S_{\text {opt }}$ that lies between t_{i} and t_{i+1}, where is any value from $\{1, \ldots, n-1\}$.

$$
\left[t i t_{t} \rightarrow t \rightarrow t\right.
$$

LO4. Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=4 T(n / 2)+n^{2}
$$

Then $T(n)=\mathrm{O}\left(n^{2} \log n\right)$. Hint: remember to state the inductive assumption.
LO5. Recall that the Maximum Subsequence Sum (MSS) problem (Exercise 34) admits a divide-and-conquer algorithm that, on input integer array a, requires computing the maximum of $\mathrm{MSS}_{\text {left }}(a), \operatorname{MSS}_{\text {right }}(a)$, and $\operatorname{MSS}_{\text {mid }}(a)$. If the array is
then

(a) Provide $\operatorname{MSS}_{\text {left }}(a), \operatorname{MSS}_{\text {right }}(a)$. Hint: no need to show work!
(b) Provide the two arrays of sums, Sum $_{\text {left }}$ and Sum $_{\text {right }}$ that are used to compute $\mathrm{MSS}_{\text {mid }}(a)$. Explain how to compute $\mathrm{MSS}_{\text {mid }}(a)$ from these two arrays.

