CECS 528, Learning Outcome Assessment 5 (Version a), March 3rd, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO1. Which function has a faster big-O growth: $2^{\sqrt{\log n}}$ or $n^{\log ^{49} n}$? Defend your answer.
LO2. Recall the use of the disjoint-set data structure for the purpose of improving the running time of the UTS algorithm. For the set of tasks

Task	a	b	c	d	e	f
Deadline	4	4	4	1	4	0
Profit	60	50	40	30	20	10

For each task, show the M-Tree forest after it has been inserted (or at least has attempted to be inserted in case the scheduling array is full). Notice that the earliest deadline is 0 , meaning that the earliest slot in the schedule array has index 0 . Hint: to receive credit, your solution should show six different snapshots of the M-Tree forest.

LO3. Answer the following with regards to a correctness-proof outline for the Fractional Knapsack algorithm.
(a) Assume $x_{1}, x_{2}, \ldots, x_{n}$ is an ordering of the items in decreasing order of profit density (i.e. profit per unit weight). Let f_{i} denote the fraction of item i that the FK-algorithm adds to the knapsack. Which of the following is a possible sequence for $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$?
I. $1,1,0.5,0.3,0$
II. $0,0,0.4,1,1$
III. $1,1,0.3,0,0$
IV. $0,0.3,0.5,1,1$
(b) Let $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}$ be a sequence of fractions that optimizes total profit, and assume that $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$. Explain why, in this case, it must be true that $f_{k}^{\prime}<f_{k}$. Hint: in relation to the FKA algorithm, what is the contradiction in case the opposite was true?
(c) For the scenario described in part b , if $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$, then what is the relationship between d_{k} the profit density of x_{k}, and d_{k+1}, the profit density of x_{k+1} ? Explain.

LO4. Given $T(n)=a T(n / 3)+n^{4}$, for some unknown integer $a \geq 1$, what is the least value that a can assume and yet still have $T(n)=\omega\left(n^{4}\right)$. Justify your answer.

LO5. Recall that the Minimum Positive Subsequence Sum (MPSS) problem (Exercise 36) admits a divide-and-conquer algorithm that, on input integer array a, requires computing the mpss of any subarray of a that contains both $a[n / 2-1]$ and $a[n / 2]$ (the end of $a_{\text {left }}$ and the beginning of $a_{\text {right }}$. For

$$
a=-23,42,-38,50,-43,54,-45,56,-39,27
$$

(a) Provide the two sorted arrays a and b from which the minimum positive sum $a[i]+b[j]$ represents the desired mpss, for some i in the index range of a and some j within the index range of b.
(b) For the a and b in part a, demonstrate how the minimum positive sum $a[i]+b[j]$ may be computed in $\mathrm{O}(n)$ steps.

