
CECS 528, Learning Outcome Assessment 4, Feb 24th, Spring 2023, Dr.
Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-
NICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets
of paper.

Problems

LO1. Which function has a faster big-O growth: (log n)
√
logn or (log log n)log

2 n? Defend your answer.

Solution. After applying the log-ratio test we must compare the growth of
√

log n log(log n)
with that of log2 n log(log(log(n))). Letting z = log n, this is equivalent to comparing

√
z log z

with z2 log(log z). By Theorem 2.3.3 and 2.3.4 of the Big-O lecture, we see that z2 log(log z)
grows faster. Therefore, (log log n)log

2 n grows faster.

LO2. The tree below shows the state of the binary min-heap at the beginning of some round of Prim’s
algorithm, applied to some weighted graph G. If G has edges

(b, c, 3), (c, e, 7), (c, f, 3), (c, g, 6), (c, p, 2),

then draw a plausible state of the heap at the end of the round. (0 points)

c/3
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a/9 f/11

g/4

m/5 p/8

LO3. Answer the following with regards to a correctness-proof outline for the Fractional Knapsack
algorithm.

(a) Assume x1, x2, . . . , xn is an ordering of the items in decreasing order of profit density (i.e.
profit per unit weight). Let fi denote the fraction of item i that the FK-algorithm adds
to the knapsack, i = 1, 2, . . . , n. In relation to the FKA algorithm, why is it the case that
f1 ≥ f2 ≥ · · · ≥ fn is a non-increasing sequence of fractions.

Solution. fi ≥ fi−1 since the algorithm always adds as much of an item as possible.
Thus, the fraction sequence has the form

1, . . . , 1, f, 0, . . . , 0,

where f ∈ [0, 1]. In other words, all of an item will be added so long as there is enough
remaining capacity. This is followed by at most one item for which only a fraction f of
the item can be added, meaning the knapsack will result in being filled. Therefore, all
subsequent fractions must equal 0.
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(b) Let f ′1, f
′
2, . . . , f

′
n be a sequence of fractions that optimizes total profit, and assume that

fi = f ′i , for all i < k, but fk 6= f ′k. Explain why, in this case, it must be true that f ′k < fk.
Hint: in relation to the FKA algorithm, what is the contradiction in case the opposite was
true?

Solution. From the answer to part a, f ′k > fk means that the algorithm did not add as
much of item xk as it could have, a contradiction since the algorithm always adds as much
of an item as is physically possible.

(c) From part b, the optimal solution uses (fk − f ′k)wk less weight of item xk. What is the
most profitable way that the optimal solution can replace this lost weight? Show that the
profit made in this case is no greater than the profit that would have been made had it
used fk units of xk. Conclude that a second optimal solution exists for which fi = f ′i for
all i = 1, . . . , k.

Solution. Since items x1, . . . , xk have all been accounted for, the next most profitable
item to add is xk+1. But adding (fk − f ′k)wk of this item yields a profit equal to

dk+1(fk − f ′k)wk ≤ dk(fk − f ′k)wk,

since the profit density dk+1 does not exceed that of dk. Therefore, by replacing (fk−f ′k)wk

units of the next most profitable item with (fk−f ′k)wk of xk, the resulting knapsack remains
optimal and now agrees with the FKA knapsack up to item xk. Continuing in this manner
we evenutally arrive at and optimal knapsack that entirely agrees with the FKA knapsack.

LO4. Given T (n) = aT (n/3)+n4, for some unknown integer a ≥ 1, using appropriate big-O notation,
provide tight lower and upper bounds for the growth of T (n). Justify your answer.

Solution. By Case 3 of the Master Theorem, we know that T (n) = Ω(f(n)) = Ω(n4). In
other words, T (n) cannot grow as o(n4). By Case 2 of the Master Theorem, if a = 81, then
T (n) = Θ(n4 log n). Finally, for a > 81, Case 1 of the Master Theorem implies T (n) = Θ(nlog3 a)
which grows unboundedly as a → ∞. Therefore T (n) has worst-case polynomial growth with
the slowest possible growth being Θ(n4).
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