CECS 528, Learning Outcome Assessment 12b, May 5th, Spring 2023, Dr. Ebert

Problems

LO1. Suppose function $f(n)$ defined as follows.

$$
f(n)= \begin{cases}4 n^{2.3} \log ^{3} n & \text { if } n \bmod 3=0 \\ 2^{\log ^{2.2}} & \text { if } n \bmod 3=1 \\ 10 n^{2.2} \log ^{35} n & \text { if } n \bmod 3=2\end{cases}
$$

Provide a big-O upper bound and big- Ω lower bound for $f(n)$.
LO2. The tree below shows the state of the binary min-heap at the beginning of some round of Dijkstra's algorithm, applied to some weighted graph G. If G has directed edges

$$
(c, e, 7),(c, f, 3),(c, g, 6),(c, p, 2),(f, c, 2)
$$

then draw a plausible state of the heap at the end of the round.

LO3. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm. (0 pts)
(a) Let $S=t_{1}, \ldots, t_{m}$ be the set of non-overlapping tasks selected by TSA and sorted by finish time, i.e. $f\left(t_{i}\right)<f\left(t_{i+1}\right)$ for all $i=1, \ldots, m-1$. Let S_{Opt} be an optimal set of tasks and assume that, for some $k \geq 1, t_{1}, \ldots, t_{k} \in S_{\mathrm{opt}}$, but $t_{k+1} \notin S_{\mathrm{opt}}$. Let $t^{\prime} \in S_{\mathrm{opt}}$ be the earliest task that follows t_{k}. What can we say about the relationship between $f\left(t_{k+1}\right)$ and $f\left(t^{\prime}\right)$? Justify your answer.
(b) Suppose we have established the existence of an optimal set of tasks $S_{\text {opt }}$ such that $S \subseteq S_{\text {opt }}$. To finish the proof, we must show that there cannot be a task in $S_{\text {opt }}$ that is not in S. As a step in this direction, explain why there can be no task $t \in S_{\text {opt }}$ that lies between t_{i} and t_{i+1}, where i is any value from $\{1, \ldots, n-1\}$.

LO4. Given the recurrence $T(n)=2 T(n / 2)+n \log n$, use the substitution method to prove $T(n)=$ $\Omega\left(n \log ^{2} n\right)$. Remember to state the inductive assumption.

LO5. At the top level of recursion for the Median-of-Five Find Statistic algorithm, with

$$
a=84,38,54,60,10,74,22,75,57,19,27,64,35,3,80,68,72,13,87,36,6,5
$$

and $k=10$ as inputs,
(a) What number will be chosen as the pivot for the partitioning step? Show work.
(b) At the next level (1) of recursion, which array will be examined: $a_{\text {left }}$? $a_{\text {right }}$? neither? Explain.

LO6. Given that $r=a e+b g, s=a f+b h, t=c e+d g$, and $u=c f+d h$ are the four entries of $A B$, and Strassen's products are obtained from matrices

$$
\begin{gathered}
A_{1}=a, B_{1}=f-h, A_{2}=a+b, B_{2}=h, A_{3}=c+d, B_{3}=e, A_{4}=d, B_{4}=g-e \\
A_{5}=a+d, B_{5}=e+h, A_{6}=b-d, B_{6}=g+h, A_{7}=a-c, B_{7}=e+f
\end{gathered}
$$

Compute P_{1}, \ldots, P_{7} and use them to compute r, s, t, and u.
LO7. Answer/solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Edit Distance optimization problem defines a recurrence for the function $d(i, j)$. In words, what does $d(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $d(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ acbcaa and $v=$ aabbca. Show the matrix of subproblem solutions and use it to provide an optimal solution.

LO8. Answer the following.
(a) Provide the dynamic-programming recurrence for computing $\mathrm{d}(u, v)$ the distance from vertex u to vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(e)$ gives the cost of edge e, for each $e \in E$.
(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the left of v. The vertices of G are a-h, while the weighted edges of G are

$$
\begin{gathered}
(a, b, 1),(a, e, 13),(a, f, 12),(b, c, 16),(b, g, 15),(c, d, 2),(c, g, 16),(c, h, 18),(d, h, 15),(e, b, 6) \\
(e, f, 19),(f, b, 19),(f, c, 7),(f, g, 4),(g, d, 15),(g, h, 12) .
\end{gathered}
$$

(c) Starting with $u=h$, and working backwards (from right to left in the topological sort), use the recurrence from part a to compute $d(u, h)$ for each $u \in\{a, b, \ldots, h\}$, where the ultimate goal is to compute $d(a, h)$.

LO9. A flow f (2nd value on each edge) has been placed in the network G below.
(a) Draw the residual network G_{f} and use it to determine an augmenting path P. Highlight path P in the network so that it is clearly visible.

(b) In the original network, cross out any flow value that changed, and replace it with its updated value from $f_{2}=\Delta(f, P)$.
(c) What one query can be made to a Reachability oracle to determine if f_{2} is a maximum flow for G ? Hint: three inputs are needed for the reachable query function. Clearly define each of them.

LO10. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B.
(b) Is $f(n)=n^{2}+3 n+5$ a valid mapping reduction from the Even decision problem to the Odd decision problem? Justify your answer.

LO11. Recall the mapping reduction $f(F)=\mathcal{C}$, where f maps an instance of SAT to an instance of the 3SAT decision problem. Given SAT instance

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \vee\left(x_{2} \wedge \bar{x}_{3}\right)
$$

show each of the following steps towards computing $f(F)$.
(a) Draw F 's parse tree, label its internal nodes with y-variables, and provide the initial Boolean formula that asserts that F is satisfiable.
(b) Convert the formula from part a to an equivalent one that uses only AND, OR, and NEGATION.
(c) Use De Morgan's rule and the distributive rule to convert your formula from part b to one that is an "AND of OR's".
(d) Convert the formula from part c to a 3SAT instance by using 3SAT notation, and duplicating literals whenever necessary in order to ensure that each clause has three literals.

