CECS 528, Learning Outcome Assessment 12a, May 5th, Spring 2023, Dr. Ebert

Problems

LO1. Suppose function $f(n)$ defined as follows.

$$
f(n)= \begin{cases}4 n^{2.3} \log ^{3} n & \text { if } n \bmod 3=0 \\ 2^{\log ^{2.2}} & \text { if } n \bmod 3=1 \\ 10 n^{2.2} \log ^{35} n & \text { if } n \bmod 3=2\end{cases}
$$

Provide a big-O upper bound and big- Ω lower bound for $f(n)$.
LO2. The tree below shows the state of the binary min-heap at the beginning of some round of Dijkstra's algorithm, applied to some weighted graph G. If G has directed edges

$$
(c, e, 7),(c, f, 3),(c, g, 6),(c, p, 2),(f, c, 2)
$$

then draw a plausible state of the heap at the end of the round.

LO3. In the correctness proof of Prim's algorithm, suppose $T=e_{1}, \ldots, e_{n-1}$ are the edges selected by Prim's algorithm (in that order) and $T_{\text {opt }}$ is an mst that uses edges e_{1}, \ldots, e_{k-1}, but for which $e_{k} \notin T_{\mathrm{Opt}}$. Explain how to identify an edge $e \in T_{\mathrm{Opt}}$ for which $T_{\mathrm{Opt}}+e_{k}-e$ is an mst that now possesses edges e_{1}, \ldots, e_{k}. Hint: consider tree T_{k-1} which is Prim's tree after having selected e_{k-1} and is thus a subtree of T_{Opt}.

LO4. Given the recurrence $T(n)=2 T(n / 2)+n \log n$, use the substitution method to prove $T(n)=$ $\Omega\left(n \log ^{2} n\right)$. Remember to state the inductive assumption.

LO5. At the top level of recursion for the Median-of-Five Find Statistic algorithm, with

$$
a=84,38,54,60,10,74,22,75,57,19,27,64,35,3,80,68,72,13,87,36,6,5
$$

and $k=10$ as inputs,
(a) What number will be chosen as the pivot for the partitioning step? Show work.
(b) At the next level (1) of recursion, which array will be examined: $a_{\text {left }}$? $a_{\text {right }}$? neither? Explain.

LO6. Given that $r=a e+b g, s=a f+b h, t=c e+d g$, and $u=c f+d h$ are the four entries of $A B$, and Strassen's products are obtained from matrices

$$
\begin{gathered}
A_{1}=a, B_{1}=f-h, A_{2}=a+b, B_{2}=h, A_{3}=c+d, B_{3}=e, A_{4}=d, B_{4}=g-e, \\
A_{5}=a+d, B_{5}=e+h, A_{6}=b-d, B_{6}=g+h, A_{7}=a-c, B_{7}=e+f,
\end{gathered}
$$

Compute P_{1}, \ldots, P_{7} and use them to compute r, s, t, and u.
LO7. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Matrix-Chain Multiplication optimization problem defines a recurrence for the function $\mathrm{mc}(i, j)$. In words, what does $\mathrm{mc}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{mc}(i, j)$.
(c) Apply the recurrence from Part b to the dimension sequence $3,2,6,2,4$. Show the matrix of subproblem solutions and use it to provide an optimal parenthesization.

LO8. Answer the following.
(a) Provide the dynamic-programming recurrence for computing $\operatorname{mc}(u, v)$ the maximum-cost of any path from vertex u to vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(e)$ gives the cost of edge e, for each $e \in E$. Hint: credit will not be awarded for using $d(u, v)$ instead of $\operatorname{mc}(u, v)$.
(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the left of v. The vertices of G are a-h, while the weighted edges of G are

$$
\begin{gathered}
(a, b, 1),(a, e, 13),(a, f, 12),(b, c, 16),(b, g, 15),(c, d, 2),(c, g, 16),(c, h, 18),(d, h, 15),(e, b, 6) \\
(e, f, 19),(f, b, 19),(f, c, 7),(f, g, 4),(g, d, 15),(g, h, 12) .
\end{gathered}
$$

(c) Starting with $u=h$, and working backwards (from right to left in the topological sort), use the recurrence from part a to compute $\operatorname{mc}(u, h)$ for each $u \in\{a, b, \ldots, h\}$, where the ultimate goal is to compute $d(a, h)$.

LO9. Consider the 2SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}\right),\left(x_{1}, \bar{x}_{3}\right),\left(x_{1}, \bar{x}_{4}\right),\left(\bar{x}_{1}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(\bar{x}_{2}, x_{3}\right)\left(\bar{x}_{3}, \bar{x}_{4}\right)\right\} .
$$

(a) Draw the implication graph $G_{\mathcal{C}}$.
(b) Find a literal l for which i) R_{l} is an inconsistent reachability set, ii) $R_{\bar{l}}$ is a consistent reachability set, and iii) $\alpha_{R_{\bar{l}}}$ satisfies all the clauses of \mathcal{C}. For full credit clearly state the literal l you have chosen and verify that each of the three properties are satisfied. Hint: for example, if you choose $l=\bar{x}_{3}$, then $\bar{l}=\overline{\bar{x}}_{3}=x_{3}$.

LO10. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B.
(b) For the mapping reduction f : Clique \rightarrow Half Clique provided in Exercises 11 and 12, and for Clique instance $(G, k=3)$, draw $f(G, k)$, where G is shown below.

(c) Verify that (G, k) and $f(G, k)$ are either both positive instances or both negative instances of their respective decision problems. Defend your answer.

LO11. Recall the mapping reduction $f(\mathcal{C})=(G, k)$, where f maps an instance of 3SAT to an instance of the Clique decision problem. Given 3SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}, \bar{x}_{2}\right),\left(x_{1}, x_{2}, x_{2}\right),\left(\bar{x}_{1}, x_{2}, x_{2}\right),\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{2}\right)\right\}
$$

answer the following questions about $f(\mathcal{C})$. Hint: to answer these questions you do not need to draw G.
(a) How many vertices does G have? Justify your answer.
(b) How many edges does G have? Show work and justify your answer.
(c) Verify that \mathcal{C} and $f(\mathcal{C})=(G, k)$ are either both positive instances or both negative instances of their respective decision problems. Defend your answer.

