CECS 528, Learning Outcome Assessment 11b, April 28th, Spring 2023, Dr. Ebert

Problems

LO7. Answer the following.
(a) The Floyd-Warshall algorithm establishes a recurrence for $d_{i j}^{k}$. In words, what does $d_{i j}^{k}$ equal?
(b) Provide the dynamic-programming recurrence $d_{i j}^{k}$.
(c) When executing the Floyd-Warshall algorithm, assume

$$
d^{3}=\left(\begin{array}{cccccc}
0 & 12 & 14 & 2 & 2 & 6 \\
9 & 0 & 20 & 13 & 1 & 3 \\
7 & 5 & 0 & 7 & 6 & 1 \\
15 & 10 & 19 & 0 & 5 & 2 \\
9 & 3 & 5 & 6 & 0 & 3 \\
6 & 5 & 4 & 8 & 2 & 0
\end{array}\right)
$$

has been computed. Use this matrix to compute d^{5}. Then use d^{5} to compute d^{6}.
LO8. Answer the following.
(a) Provide the dynamic-programming recurrence for computing $\operatorname{mc}(u, v)$ the maximum-cost of any path from vertex u to vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(e)$ gives the cost of edge e, for each $e \in E$. Hint: credit will not be awarded for using $d(u, v)$ instead of $\operatorname{mc}(u, v)$.
(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the left of v. The vertices of G are a-h, while the weighted edges of G are

$$
\begin{gathered}
(a, b, 18),(a, e, 14),(a, f, 19),(b, c, 13),(b, g, 9),(c, d, 8),(c, g, 13),(c, h, 11),(d, h, 15),(e, b, 5) \\
(e, f, 1),(f, b, 19),(f, c, 9),(f, g, 8),(g, d, 4),(g, h, 18) .
\end{gathered}
$$

(c) Starting with $u=h$, and working backwards (from right to left in the topological sort), use the recurrence from part a to compute $\operatorname{mc}(u, h)$ for each $u \in\{a, b, \ldots, h\}$, where the ultimate goal is to compute $d(a, h)$.

LO9. A flow f (2nd value on each edge) has been placed in the network G below.
(a) Draw the residual network G_{f} and use it to determine an augmenting path P. Highlight path P in the network so that it is clearly visible.

(b) In the original network, cross out any flow value that changed, and replace it with its updated value from $f_{2}=\Delta(f, P)$.
(c) What one query can be made to a Reachability oracle to determine if f_{2} is a maximum flow for G ? Hint: three inputs are needed for the reachable query function. Clearly define each of them.

LO10. Answer the following.

(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B. Note: $A=\{2 z, 44,45\} \quad N=\sum_{s \in S}^{S}=14$
(b) For the mapping reduction $f:$ Subset Sum \rightarrow Set Partition, determine $f(S, t)$ for Subset Sum instance $(S=\{4,7,15,19,22,38, \underline{44}, \underline{45}\}, t=111)$. Show work. $f(S, t)=S \cup\{28\}$
(c) Verify that both (S, t) and $f(S, t)$ are either both positive instances, or are both negative $f(s, t)$ is ones. Explain and show work. A above verifies (s, t) is posit ive

LO11. Recall the mapping reduction $f(\mathcal{C})=(G, k)$, where f maps an instance of 3SAT to an instance of the Clique decision problem. Given 3SAT instance
 has g edges

