# CECS 528, Learning Outcome Assessment 11a, April 28th, Spring 2023, Dr. Ebert 

## Problems

LO7. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Optimal Binary Search Tree optimization problem defines a recurrence for the function $\operatorname{wac}(i, j)$. In words, what does wac $(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{wac}(i, j)$.
(c) Apply the recurrence from Part b to the keys 1-5 having respective weights 25,45,20,20,30. Show the matrix of subproblem solutions and use it to provide an optimal binary search tree.

LO8. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Runaway Traveling Salesperson optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a recurrence for the function $\mathrm{mc}(i, A)$. In words, what does $\mathrm{mc}(i, A)$ equal? Hint: do not write the recurrence (see Part b). Note: we call it "Runaway TSP" because the salesperson does not return to home after visiting each city.
(b) Provide the dynamic-programming recurrence for $\operatorname{mc}(i, A)$.
(c) Apply the recurrence from Part b to the graph below. Show all the necessary computations.


LO9. Consider the 2SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}\right),\left(x_{1}, \bar{x}_{3}\right),\left(x_{1}, \bar{x}_{4}\right),\left(\bar{x}_{1}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(\bar{x}_{2}, x_{3}\right)\left(\bar{x}_{3}, \bar{x}_{4}\right)\right\} .
$$

(a) Draw the implication graph $G_{\mathcal{C}}$.
(b) Find a literal $l$ for which i) $R_{l}$ is an inconsistent reachability set, ii) $R_{\bar{l}}$ is a consistent reachability set, and iii) $\alpha_{R_{\bar{l}}}$ satisfies all the clauses of $\mathcal{C}$. For full credit clearly state the literal $l$ you have chosen and verify that each of the three properties are satisfied. Hint: for example, if you choose $l=\bar{x}_{3}$, then $\bar{l}=\overline{\bar{x}}_{3}=x_{3}$.

LO10. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem $A$ to decision problem $B$.
(b) For the mapping reduction $f$ : Clique $\rightarrow$ Half Clique provided in Exercises 11 and 12, and for Clique instance $(G, k=5)$, determine $f(G, k)$, where $G$ is shown below.

(c) Verify that $(G, k)$ and $f(G, k)$ are either both positive instances or both negative instances of their respective decision problems. Defend your answer.

LO11. Recall the mapping reduction $f(\mathcal{C})=(S, t)$, where $f$ maps an instance of 3SAT to an instance of the Subset decision problem. Given 3SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}, x_{5}\right),\left(x_{2}, x_{3}, \bar{x}_{4}\right),\left(x_{1}, x_{2}, x_{4}\right),\left(\bar{x}_{1}, \bar{x}_{3}, \bar{x}_{5}\right)\right\}
$$

answer the following questions about $f(\mathcal{C})$. Hint: to answer these questions you are not required to draw the table.
(a) What is the value of $t$ ?
(b) How many numbers (counting repeats) are in $S$ ? What is the largest (in terms of numerical value) number in $S$ ?
(c) Use satisfying assignment $\alpha=\left(x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0, x_{5}=0\right)$ for $\mathcal{C}$ and use it to identify a subset $A$ of $S$ that sums to $t$. List all the members of $A$.

