CECS 528, Learning Outcome Assessment 10a, April 21st, Spring 2023, Dr. Ebert

Problems

LO6. Recall that the find_statistic algorithm makes use of Quicksort's partitioning algorithm and uses a pivot that is guaranteed to have at least

$$
3\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rfloor-2\right) \geq 3\left(\frac{1}{2} \cdot \frac{n}{5}-3\right)=\frac{3 n}{10}-9 .
$$

members of array a on both its left and right sides. Disect the expression to the left of \geq by explaining the significance of each of the following. Three out of four correct for passing.
(a) $\frac{n}{5}$
(b) 3
(c) $\frac{1}{2}$
(d) -2

LO7. Answer the following.
(a) The Floyd-Warshall algorithm establishes a recurrence for $d_{i j}^{k}$. In words, what does $d_{i j}^{k}$ equal?
(b) Provide the dynamic-programming recurrence $d_{i j}^{k}$.
(c) When executing the Floyd-Warshall algorithm, assume

$$
d^{4}=\left(\begin{array}{cccccc}
0 & 12 & 14 & 2 & 2 & 6 \\
9 & 0 & 20 & 13 & 1 & 3 \\
7 & 5 & 0 & 7 & 6 & 1 \\
15 & 10 & 19 & 0 & 5 & 2 \\
9 & 3 & 5 & 6 & 0 & 3 \\
6 & 5 & 4 & 8 & 2 & 0
\end{array}\right)
$$

has been computed. Use this matrix to compute d^{5}. Then use d^{5} to compute d^{6}.
LO8. Answer the following.
(a) Provide the dynamic-programming recurrence for computing $d(u, v)$ the distance from vertex u to vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(e)$ gives the cost of edge e, for each $e \in E$.
(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the left of v. The vertices of G are a-h, while the weighted edges of G are

$$
\begin{gathered}
(a, b, 18),(a, e, 14),(a, f, 19),(b, c, 13),(b, g, 9),(c, d, 8),(c, g, 13),(c, h, 11),(d, h, 15),(e, b, 5) \\
(e, f, 1),(f, b, 19),(f, c, 9),(f, g, 8),(g, d, 4),(g, h, 18) .
\end{gathered}
$$

(c) Starting with $u=h$, and working backwards (from right to left in the topological sort), use the recurrence from part a to compute each of $d(u, h)$, where the ultimate goal is to compute $d(a, h)$.

LO9. A flow f (in red) has been placed in the network G below.
(a) Draw the residual network G_{f} and use it to determine an augmenting path P. Highlight path P in the network so that it is clearly visible.

(b) Redraw the original network, but with the f flow values being replaced by the $\Delta(f, P)$ flow values.
(c) What one query is needed to the Reachability-oracle in order to determine if $f_{2}=\Delta(f, P)$ is a maximum flow for G ?

LO10. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B. (See Page 4 of Turing and Map Reducibility Lecture).
(b) For the mapping reduction f : Subset Sum \rightarrow Set Partition, determine $f(S, t)$ for Subset Sum instance ($S=\{2,7,10,14,31,33,38,46\}, t=71$). Show work.
(c) Verify that the (yes/no) answer to both (S, t) and $f(S, t)$ are identical. Explain.

