NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO3. Provide a regular expression that represents the set of binary words that have at least one 0 and at least one 1.
Solution. Key idea: a necessary and sufficient condition is that at least one of the words from $\{01,10\}$ must be in a word of the language (why?).

$$
\{0,1\}^{*}\{01,10\}\{0,1\}^{*}
$$

LO4. Do the following.
(a) Provide a context free grammar $G=(V, \Sigma, R, S)$ for which $L(G)$ is the set of binary words that have an odd number of 0 's and exactly one 1.
Solution. Idea: X generates an odd number of 0 's, while Y generates an even number of 0 's. In other words,

$$
\begin{gathered}
\mathrm{ODD}=\mathrm{ODD} \oplus \mathrm{EVEN}=\mathrm{EVEN} \oplus \mathrm{ODD} \\
\qquad \\
S \rightarrow X 1 Y \mid Y 1 X \\
X \rightarrow 00 X \mid 0 \\
Y \rightarrow 00 Y \mid \varepsilon
\end{gathered}
$$

(b) Use G to provide a leftmost derivation of $w=000100$.

$$
S \rightarrow X 1 Y \rightarrow 00 X 1 Y \rightarrow 0001 Y \rightarrow 000100 Y \rightarrow 000100
$$

LO5. Let $\operatorname{Trunc}(x, i)$ denote the number x with its first i digits cut off. For example, $\operatorname{Trunc}(958,0)=$ 958, $\operatorname{Trunc}(958,1)=95$, $\operatorname{Trunc}(958,2)=9$, and $\operatorname{Trunc}(958, i)=0$ for every $i \geq 3$. Provide a recursive definition of $\operatorname{Trunc}(x, i)$. You may use any PR functions from the General Models of Computation lecture examples and exercises.
Solution. Key idea: to get the next truncated value, divide the current truncated value by 10. For example, $8473 / 10=847,847 / 10=84,84 / 10=8,8 / 10=0$, etc.
Base case: $\operatorname{Trunc}(x, 0)=x$
Recursive case: $\operatorname{Trunc}(x+1, i)=\operatorname{Trunc}(x, i) / 10$.

LO6. Do the following.
(a) Compute the Gödel number for program $P=Z(3), J(2,1,2), T(3,1), S(4)$. Write your answer as a sum of powers of two minus 1 (see part b).

Solution.

$$
\begin{gathered}
\beta(Z(3))=4(2)=8 \\
\beta(J(2,1,2))=4 \xi(1,0,1)+3=4 \pi(\pi(1,0), 1)+3=4 \pi(1,1)+3=4(5)+3=23 . \\
\beta(T(3,1))=4 \pi(2,0)+2=4(3)+2=14 . \\
\beta(S(4))=4(3)+1=13 . \\
\gamma(P)=\tau(8,23,14,13)=2^{8}+2^{32}+2^{47}+2^{61}-1 .
\end{gathered}
$$

(b) Provide the URM program P whose Gödel number equals

$$
2^{9}+2^{36}+2^{56}+2^{77}-1
$$

Solution.

$P=S(3), T(1,4), J(1,1,3), Z(6)$
For example, to get $J(1,1,3)$, we have $56-36-1=19$ and $19 \bmod 4=3$ which implies a Jump instruction. Also, $(19-3) / 4=4$, and $\pi^{-1}(4)=(0,2)$ since $(4+1)=5=2^{0}(2(2)+1)$. Finally, π^{-1} of the exponent 0 equals $(0,0)$ since $(0+1)=1=2^{0}(2(0)+1)$. Therefore, we have $J(0+1,0+1,2+1)=J(1,1,3)$.

LO7. Do the following.
(a) Which of the following is not needed by a universal program P_{U} on inputs x and y ?
i. the maximum index of any register used by P_{x}
ii. the number of instructions of P_{x}
iii. the maximum number of configurations used in the computation of P_{x} on input y
iv. All of the above are needed to simulate the computation of P_{x} on input y.

Solution. iii), since in general it is not possible know the maximum number of configurations used in the computation of a program on one of its inputs. In fact, some computations never terminate.
(b) Consider the computation of $P_{U}(x, 2)$, where $x=2^{5}+2^{11}+2^{27}+2^{42}-1$. If the current configuration of $P_{x}(2)$ has encoding $\sigma=2^{2}+2^{5}+2^{6}+2^{10}-1$, then provide the next configuration of the computation and its encoding.

Solution.

$P_{x}=S(2), S(2), J(1,2,1), T(3,1)$.
The current configuration is $\tau^{-1}(\sigma)=(2,2,0,3)$. Thus, the program counter equals 3 and the next instruction is $J(1,2,1)$. Finally, since $R_{1}=R_{2}=2$, the next configuration is (2, 2, 0, 1) and

$$
\tau(2,2,0,1)=2^{2}+2^{5}+2^{6}+2^{8}-1
$$

