CECS 329, Learning Outcome Assessment 6, March 9th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-NICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO2. Do the following for the NFA N whose state diagram is shown below.

- (a) Provide a table that represents N's δ transition function.
- (b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.
- (c) Show the computation of M on input w = 11001.

LO3. Provide a regular expression that represents the set of words of the form

 $(w_1 \# w_2) + (w_3 \# w_4) + \dots + (w_{2n-1} \# w_{2n}),$

where each w_i , i = 1, ..., 2n, is a nonempty binary word. For example (010#1) + (11#110) is one such word. Hint: the underlying alphabet is $\Sigma = \{0, 1, (,), \#, +\}$.

- LO4. Do the following.
 - (a) Provide a context free grammar $G = (V, \Sigma, R, S)$ for which L(G) is the set of words of the form

$$(w_1 \# w_2) + (w_3 \# w_4) + \dots + (w_{2n-1} \# w_{2n}),$$

where each w_i , i = 1, ..., 2n, is a nonempty binary word. For example w = (0#1) + (10#0) is one such word. Hint 1: the terminal set is $\Sigma = \{0, 1, (,), \#, +\}$. Hint 2: use the start symbol to generate the first left parenthesis, but use a different variable to generate all subsequent left parentheses.

- (b) Use G to provide a leftmost derivation of w = (0#1) + (10#0).
- LO5. Let $\operatorname{len}(x)$ be defined as the length of natural number x when written in binary. For example, $\operatorname{len}(13) = 4$ since $(13)_2 = 1101$. Provide a *recursive* definition for $\operatorname{len}(x)$. You may use any functions defined in any of the examples or exercises of the Models of Computation lecture. Hint: you may find it helpful to use \exists , the bounded existential function, whose single input should be a predicate function $M(\vec{x}, y)$.
- LO6. Do the following.
 - (a) Compute the Gödel number for program P = J(1, 1, 2), T(2, 4), Z(3), S(6). Write your answer as a sum of powers of two minus 1 (see part b).
 - (b) Provide the URM program P whose Gödel number equals

$$2^{10} + 2^{23} + 2^{29} + 2^{77} - 1.$$