NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO2. Do the following for the NFA N whose state diagram is shown below.

(a) Provide a table that represents N 's δ transition function.
(b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.
(c) Show the computation of M on input $w=11001$.

LO3. Provide a regular expression that represents the set of words of the form

$$
\left(w_{1} \# w_{2}\right)+\left(w_{3} \# w_{4}\right)+\cdots+\left(w_{2 n-1} \# w_{2 n}\right),
$$

where each $w_{i}, i=1, \ldots, 2 n$, is a nonempty binary word. For example $(010 \# 1)+(11 \# 110)$ is one such word. Hint: the underlying alphabet is $\Sigma=\{0,1,(),, \#,+\}$.

LO4. Do the following.
(a) Provide a context free grammar $G=(V, \Sigma, R, S)$ for which $L(G)$ is the set of words of the form

$$
\left(w_{1} \# w_{2}\right)+\left(w_{3} \# w_{4}\right)+\cdots+\left(w_{2 n-1} \# w_{2 n}\right)
$$

where each $w_{i}, i=1, \ldots, 2 n$, is a nonempty binary word. For example $w=(0 \# 1)+(10 \# 0)$ is one such word. Hint 1: the terminal set is $\Sigma=\{0,1,(),, \#,+\}$. Hint 2: use the start symbol to generate the first left parenthesis, but use a different variable to generate all subsequent left parentheses.
(b) Use G to provide a leftmost derivation of $w=(0 \# 1)+(10 \# 0)$.

LO5. Let len (x) be defined as the length of natural number x when written in binary. For example, $\operatorname{len}(13)=4$ since $(13)_{2}=1101$. Provide a recursive definition for len (x). You may use any functions defined in any of the examples or exercises of the Models of Computation lecture. Hint: you may find it helpful to use $\underset{z \leq y}{\exists}$, the bounded existential function, whose single input should be a predicate function $M(\vec{x}, y)$.

LO6. Do the following.
(a) Compute the Gödel number for program $P=J(1,1,2), T(2,4), Z(3), S(6)$. Write your answer as a sum of powers of two minus 1 (see part b).
(b) Provide the URM program P whose Gödel number equals

$$
2^{10}+2^{23}+2^{29}+2^{77}-1
$$

