NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Solution to LO1

Problems

LO1. Do the following.

(a) Provide the state diagram for a DFA that accepts the binary language L described as follows. Binary word $w \in L$ iff either i) w is empty, ii) w consists of all 0's, or iii) each 1 bit in w is next to exactly one other 1 bit. For example, 01100011 and 000 are words in L, while 0100110 and 01101110 are not words in L.
(b) Show the computation of M on input i) $w=011011$ and ii) $w=011010 . a a b c a b$ LO2. Do the following for the NFA N whose state diagram is shown below. 1

(c) Show the computation of M on input $w=11001$.

LO3. Provide a regular expression that represents the set of binary words w that have a length of at
LO4. Do the following. $\{00,10,000,100,110\}$ least two and end with a 0 , but not including the word 010 . In other words, 010 is the only
word of length two or more that ends with a and is not the set
(a) Provide
(a) Provide a context free grammar $G=(V, \Sigma, R, S)$ for
$\{\mathrm{a}, \mathrm{b}\}^{*}$ for which there are twice as many b's as a's.
(b) Use G to provide a leftmost derivation
(b) Use G to provide a leftmost derivation of bababb. $S \rightarrow S a \leq S$
sbsasbs

$$
\begin{aligned}
& \text { sbsasbo } \\
& \text { sbsbsas } 18
\end{aligned}
$$

$S \rightarrow S b S a b s \rightarrow b S a b \rightarrow b a b S \rightarrow$ babSaSbSbS \rightarrow babaSbSbS
\rightarrow bababsbs \rightarrow bababbs
$\rightarrow b a b a b b$

