CECS 329, Learning Outcome Assessment 3, Feb 9th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO1. Do the following.

(a) Provide the state diagram of a DFA M that accepts all binary words except for 00 and 000.
(b) Show the computation of M on input i) $w=1101$ and ii) $w=1110$.

LO2. Do the following for the NFA N whose state diagram is shown below.

(a) Provide a table that represents N 's δ transition function.

Solution.

$Q \backslash \Sigma$	0	1
a	$\{\mathrm{c}, \mathrm{d}\}$	$\{\mathrm{a}, \mathrm{b}\}$
b	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$	\emptyset
c	\emptyset	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
d	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{c}, \mathrm{d}\}$

(b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.
Solution.

(c) Show the computation of M on input $w=11001$.

Solution.

Input Symbol Read	Current State
1	$\{\mathrm{a}\}$
1	$\{\mathrm{a}, \mathrm{b}\}$
0	$\{\mathrm{a}, \mathrm{b}\}$
0	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
1	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
Accepting State:	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

LO3. Do the following.
(a) Provide a regular expression that represents the set of binary words w for which either i) w has at most one 1 bit or ii) between any two 1 bits of w there is exactly an odd number of 0 bits.

Solution.

(b) Consider the CFG

$$
G=\{V=\{S\}, \Sigma=\{a, b\}, R=\{S \rightarrow S S, S \rightarrow a S b, S \rightarrow \varepsilon\}, S\}
$$

Provide a derivation of (aabblababld.
Provide a
Solution.

$$
\mathrm{S} \Rightarrow \underline{\mathrm{aSb}} \Rightarrow \underline{\mathrm{aSSb}} \Rightarrow \mathrm{aaSbSb} \Rightarrow \mathrm{aaaSbbSb} \Rightarrow \text { aaabbSb } \Rightarrow \text { aaabbSSb } \Rightarrow \text { aaabbaSbSb. }
$$

\Rightarrow aaabbabSb \Rightarrow aaabbabaSbb \Rightarrow aaabbababb.

