CECS 329, Learning Outcome Assessment 2, Feb 2nd, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-NICATION ALLOWED. Submit each solution on a separate sheet of paper.

Problem

LO1. Do the following.

- (a) Provide the state diagram of a DFA M that accepts exactly those binary words w for which either i) w has at most one 1 bit or ii) between any two 1 bits of w there is exactly an odd number of 0 bits.
- (b) Show the computation of M on input i) w = 0010100010 and ii) w = 00100001.

LO2. Do the following for the NFA N whose state diagram is shown below.

reject &

(a) Provide a table that represents N's δ transition function. Solution.

Solution				
	$Q \backslash \Sigma$	0	1	
	a	{a}	${b,c}$	
	b	Ø	{a,b,d}	
	с	{a}	{b,c}	
	d	{b}	$\{a,b,c,d\}$	

(b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.

Solution.

(c) Show the computation of M on input w = 001010. Solution.

Input Symbol Read	Current State
0	{a}
0	{a}
1	{a}
0	$\{b,c\}$
1	{a}
0	$\{b,c\}$
Rejecting State:	{a}