CECS 329, Learning Outcome Assessment 10, April 20th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO6. Do the following.
(a) Compute the Gödel number for program $P=T(2,3), Z(4), J(1,2,4), S(1)$. Write your answer as a sum of powers of two minus 1 .
(b) Provide the URM program P whose Gödel number equals

$$
2^{79}+2^{89}+2^{104}+2^{121}-1
$$

LO7. Answer and solve the following.
(a) Which of the following is not needed by a universal program P_{U} in order to simulate the computation of program P_{x} on input y ?
i. the maximum index of any register used by P_{x}
ii. the maximum number of configurations used in the computation of P_{x} on input y
iii. the number of instructions of P_{x}
iv. the length of each configuration used in the computation of P_{x} on input y
(b) A universal program P_{U} is simulating a program that has 253 instructions and whose Gödel number is

$$
x=2^{79}+2^{102}+2^{120}+2^{129}+2^{c_{5}}+\cdots+2^{c_{253}}-1 .
$$

If the current configuration of the computation of P_{x} on some input has encoding

$$
\sigma=2^{2}+2^{4}+2^{10}+2^{19}+2^{24}-1
$$

then provide the next configuration of the computation and its τ encoding.
LO8. Do the following.
(a) In one or more complete sentences, describe what is asserted by the Church-Turing Thesis.
(b) Consider the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x} \text { is total } \\ 0 & \text { otherwise }\end{cases}
$$

In other words, $g(x)=1$ iff program P_{x} halts on all of its inputs. We want to prove that $g(x)$ is undecidable, meaning there is no URM program that computes g. To do this, let's
assume that $g(x)$ is computable by some URM program G. Then define the function $f(x)$ as follows.

$$
f(x)= \begin{cases}P_{x}(x)+1 & \text { if } g(x)=1 \\ 0 & \text { if } g(x)=0\end{cases}
$$

Provide an informal description of the steps you would use to compute $f(x)$ using pencil and paper. Why does this imply that $f(x)$ is URM computable?
(c) Let e denote the Gödel number of the URM program F that computes $f(x)$ from part b . In other words $F=P_{e}$. Show that a contradiction arises when we try to compute $f(e)$ using F.

LO9. An instance of the decision problem Odd Range is a Gödel number x, and the problem is to decide if function ϕ_{x} has a range that consists only of odd natural numbers. Mathematically speaking, $g(x)=1$ iff $E_{x} \subseteq\{1,3,5, \ldots\}$. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } E_{x} \subseteq\{1,3,5, \ldots\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Evaluate $g(x)$ for each of the following Gödel number's x. Note: 2 out of 3 correct is considered passing. Justify your answers.
i. $x=e_{1}$, where e_{1} is the Gödel number of the program that computes the function $\phi_{e_{1}}(y)=y^{3}$.
ii. $x=e_{2}$, where e_{2} is the Gödel number of the program that computes the function $\phi_{e_{2}}(y)=3^{y}$.
iii. $x=e_{3}$, where e_{3} is the Gödel number of the program that computes $g(x)$ (assuming that $g(x)$ is URM computable).
(b) Prove that $g(x)$ is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 , depending on whether or not ϕ_{x} has a range consisting of odd natural numbers. Do this by writing a program P that uses g and makes use of the self programming concept. Then show how P creates a contradiction.

LO10. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B.
(b) For the mapping reduction f : Subset Sum \rightarrow Set Partition, determine $f(S, t)$ for Subset Sum instance ($S=\{2,10,14,21,33,38,46\}, t=61$). Verify that (S, t) and $f(S, t)$ are both positive instances of their respective decision problems. Show work.

