# Fast Fourier Transform 

Last Updated: September 30th, 2023

## 1 Introduction

Like Strassen's algorithm, the Fast Fourier Transform (FFT) is considered one of the more suprising and interesting known divide-and-conquer algorithms. It finds important use in the field of signal and image processing but is perhaps best understood as a means for efficiently multiplying two polynomials which we present in this lecture.

## 2 Review of Complex Numbers

Definition 2.1. A complex number is a number of the form $a+b i$, where $a, b \in \mathcal{R}$ are real numbers, and $i=\sqrt{-1}$. The conjugate of a complex number $a+b i$, denoted, $\overline{a+b i}$ is the complex number $a-b i$.

Definition 2.2. Let $a+b i$ and $c+d i$ be complex numbers. Then the following are the defined operations on complex numbers.

Addition $(a+b i)+(c+d i)=(a+c)+(b+d) i$
Subtraction $(a+b i)-(c+d i)=(a-c)+(b-d) i$
Multiplication $(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i$
Division $(a+b i) /(c+d i)=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i$

The modulus or length of complex number $c=a+b i$, denoted $|c|$, is defined as

$$
|c|=c \cdot \bar{c}=\sqrt{a^{2}+b^{2}} .
$$

With this definition we may rewrite division as

$$
c_{1} / c_{2}=\frac{c_{1} \cdot \overline{c_{2}}}{\left|c_{2}\right|^{2}},
$$

where $c_{2} \neq 0$.
Proposition 2.3. The following are some identities for complex numbers.

Conjugation When viewed as a function that maps complex number $c$ to $\bar{c}$, conjugation may be viewed as an automorphism over the field of complex numbers:

$$
\overline{c_{1}+c_{2}}=\overline{c_{1}}+\overline{c_{2}} \text { and } \overline{c_{1} c_{2}}=\overline{c_{1}} \cdot \overline{c_{2}} .
$$

Euler's Identity $e^{i \theta}=\cos \theta+i \sin \theta$
$e^{2 n \pi i}=1$ for all integers $n$.

### 2.1 Roots of Unity

For each $j=0, \ldots, n-1, e^{\frac{2 \pi i j}{n}}$ is a complex $n$th root of unity, meaning that

$$
e^{\left(\frac{2 \pi i j}{n}\right)^{n}}=e^{2 \pi i j}=\cos (2 \pi j)+i \sin (2 \pi j)=1
$$

Example 2.4. Determine the a) complex 4th roots of unity, and b) complex 6th roots of unity.

## Solution.

The next proposition shows that $e^{\frac{2 \pi i j}{n}}, j=0, \ldots, n-1$, are the only unique powers of $e^{\frac{2 \pi i}{n}}$.
Proposition 2.5. If integers $j$ and $k$ satisfy $j \equiv k \bmod n$, then

$$
e^{\frac{2 \pi i j}{n}}=e^{\frac{2 \pi i k}{n}} .
$$

Proof of Proposition. Assume $j \equiv k \bmod n$. Then $k=n q+j$, for some integer $q$. Then

$$
e^{\frac{2 \pi i k}{n}}=e^{\frac{2 \pi i(j+n q)}{n}}=e^{\frac{2 \pi i j}{n}} e^{\frac{2 \pi i n q}{n}}=e^{\frac{2 \pi i j}{n}} e^{2 \pi i q}=e^{\frac{2 \pi i j}{n}} \cdot 1=e^{\frac{2 \pi i j}{n}} .
$$

Proposition 2.5 allows us to define the abelian group whose members are the $n$th roots of unity, with multiplication serving as the group addition. In other words,

$$
e^{\frac{2 \pi i j}{n}} \cdot e^{\frac{2 \pi i k}{n}}=e^{\frac{2 \pi i(j+k)}{n}} .
$$

Moreover, the addition is associative since multiplying two roots of unity is identical to adding the two integers $j$ and $k$, and integer addition is associative. Also, 1 is the additive identity, and the (additive) inverse of $e^{\frac{2 \pi i j}{n}}$ is $e^{\frac{2 \pi i(n-j)}{n}}$. Another way of writing the inverse of $e^{\frac{2 \pi i j}{n}}$ is $e^{\frac{-2 \pi i j}{n}}$. This is valid, since $n-i \equiv-i \bmod n$.

For simplicity, we let $\omega_{n}^{j}$ denote the $j$ th root of unity, and $\omega_{n}^{-j}$ denotes its inverse. In general, for any integer $k, \omega_{n}^{k}$ is defined as being equal to $\omega_{n}^{j}$, where $j \equiv k \bmod n$.

Example 2.6. For the 6th roots of unity, determine the inverse of each group element, and verify that $(a+b i)(a+b i)^{-1}=1$ through direct multiplication.

Proposition 2.7. The following are some properties of roots of unity.

1. If $n$ is even, then $\omega_{n}^{j}$ and $-\omega_{n}^{j}$ are both roots of unity. In other words, roots of unity come in additive-inverse pairs. Furthermore, if $0 \leq j<n / 2$, then $\omega_{n}^{j+n / 2}=-\omega_{n}^{j}$.
2. If $n$ is even, then the squares of the $n$th roots of unity yield the $n / 2$ roots of unity.

## Proof of Proposition.

1. By the sum-of-angle formulas for cosine and sine, we have

$$
e^{(\theta+\pi) i}=\cos (\theta+\pi)+i \sin (\theta+\pi)=-\cos \theta-\sin \theta i=-e^{\theta i}
$$

Therefore,

$$
-\omega_{n}^{j}=e^{\left(\frac{2 \pi i j}{n}+\pi i\right)}=e^{\left(\frac{2 \pi i j}{n}+\frac{2 \pi i(n / 2)}{n}\right)}=e^{\frac{2 \pi i(j+n / 2)}{n}}=\omega_{n}^{j+(n / 2)}
$$

which is a root of unity.
2. For $0 \leq j<n / 2$, we have

$$
\left(\omega_{n}^{j}\right)^{2}=\omega_{n}^{2 j}=e^{\frac{2 \pi i(2 j)}{n}}=e^{\frac{2 \pi i j}{n / 2}},
$$

which is an $n / 2$ root of unity. Note also that, for $n / 2 \leq j<n, e^{\frac{2 \pi i j}{n}}$ is just the negative of $\omega_{n}^{j}$, and thus its square yields the same $n / 2$ root of unity as its additive-inverse counterpart.

## 3 Polynomial Multiplication and the Fast Fourier Transform

Given two polynomials

$$
A(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}
$$

and

$$
B(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}
$$

our goal is to compute the product $C(x)=A(x) B(x)$ where $C(x)$ is a degree- $2 d$ polynomial whose $k$ th term $c_{k}, k=0,1, \ldots, d$, is computed as

$$
c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i} .
$$

Thus, using the above formula we see that computing the first $d+1$ coefficients of $C(x)$ requires

$$
1+2+3+4+\cdots+d+(d+1)=\Theta\left(d^{2}\right)
$$

steps.

The following algorithm provides an alternative way to compute $C(x)$.

## Alternative Polynomial Multiplication Algorithm

Input: Coefficients of polynomials $A(x)$ and $B(x)$.
Output: Coefficients of $C(x)=A(x) B(x)$.
Pick points: $x_{0}, x_{1}, \ldots, x_{n-1}$, for some $n \geq 2 d+1$.
Evaluate $A$ and $B$ : compute $A\left(x_{0}\right), \ldots, A\left(x_{n-1}\right)$ and $B\left(x_{0}\right), \ldots, B\left(x_{n-1}\right)$.
Evaluate $C$ : compute $C\left(x_{0}\right)=A\left(x_{0}\right) B\left(x_{0}\right), \ldots, C\left(x_{n-1}\right)=A\left(x_{n-1}\right) B\left(x_{n-1}\right)$.
Interpolate: determine the unique coefficients $c_{0}, c_{1}, \ldots, c_{2 d}$ for which, for all $i=0,1, \ldots, n-1$,

$$
C\left(x_{i}\right)=c_{0}+c_{1} x_{i}+\cdots+c_{2 d} x_{i}^{2 d}
$$

Return $c_{0}, c_{1}, \ldots, c_{2 d}$.

On the surface, it appears that this method will also require $\mathrm{O}\left(d^{2}\right)$ steps, since evaluating a $d$ degree polynomial on some input $x_{i}$ generally requires $\Theta(d)$ steps via Horner's algorithm. Moreover, interpolation also requires $\mathrm{O}\left(d^{2}\right)$ steps since, as we'll see, it involves the inverting a $2 d \times 2 d$ Vandermonde matrix. However, by choosing to evaluate $A$ and $B$ with the points $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$ (i.e. the $n$th roots of unity) and evaluating a polynomial via a divide-and-conquer approach, we can reduce the total number of evaluation and interpolation steps to $\mathrm{O}(n \log n)$.

### 3.1 A Divide and Conquer approach to polynomial evaluation

In what follows we assume that $n$ is a power of two. Consider the polynomial

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} .
$$

Then $A(x)$ may be written as

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

where $A_{e}(y)$ and $A_{o}(y)$ are the polynomials

$$
A_{e}(y)=a_{0}+a_{2} y+a_{4} y^{2}+\cdots+a_{n-2} y^{\frac{n-2}{2}}
$$

and

$$
A_{o}(y)=a_{1}+a_{3} y+\cdots+a_{n-1} y^{\frac{n-2}{2}}
$$

Thus, we may evaluate $(n-1)$-degree polynomial $A(x)$ by evaluating two $\left(\frac{n-2}{2}\right)$-degree polynomials at $x^{2}$. In other words, we've taken the problem and divided it into two subproblems, each of which is one-half the size.

Now, for a single evaluation $A(x)$, the above divide-and-conquer method does not improve the running time. In fact, recurrence for the number of steps $T(n)$ is

$$
T(n)=2 T(n / 2)+n
$$

which implies $T(n)=\Theta(n \log n)$ which is worse than linear! However, suppose instead the problem is to evaluate $n$ complex points $\pm x_{1}, \pm x_{2}, \ldots, \pm x_{\frac{n}{2}}$ consisting of $n / 2$ additive-inverse pairs. Then, since $\left(-x_{i}\right)^{2}=x_{i}^{2}$, we see that the problem may again be divided into two subproblems, each of size $n / 2$, and in both cases whose $n / 2$ points that require evaluation are $x_{1}^{2}, \ldots, x_{\frac{n}{2}}^{2}$. This works so long as these $n / 2$ squares may be represented as $n / 4$ additive-inverse pairs. Of course, this would not be possible if these squares were real numbers (since the squares would all be positive), but is possible if our $n$ points are equal to the $n$th roots of unity. Let's check this.

1. By part 1 of Proposition 2.7, since we assume $n$ a power of two, the roots of unity may in fact be partitioned into additive-inverse pairs, with $\omega_{n}^{i}$ being paired with $\omega_{n}^{\frac{n}{2}+i}$, for all $i=$ $0,1, \ldots, n / 2-1$.
2. Moreover, by part two of the same proposition, the squares of the $n$th roots of unity yield precisely the $\frac{n}{2}$-th roots of unity and, since $n / 2 \geq 2$ is even, once again these numbers may be partitioned into additive-inverse pairs. Therefore the two subproblems, $\left(A_{e},\left\{x_{1}^{2}, \ldots, x_{\frac{n}{2}}^{2}\right\}\right)$ and $\left(A_{o},\left\{x_{1}^{2}, \ldots, x_{\frac{n}{2}}^{2}\right\}\right)$ are in fact two (smaller by one half) instances of the original problem.

The above divide-and-conquer algorithm leads us to the following definition.
Definition 3.1. Given complex coefficients $c_{0}, \ldots, c_{n-1}$, let $p(x)$ be the polynomial

$$
p(x)=\sum_{k=0}^{n-1} c_{k} x^{k}
$$

Then the $n$th order discrete Fourier transform is the function

$$
\operatorname{DFT}_{n}\left(c_{0}, \ldots, c_{n-1}\right)=\left(y_{0}, \ldots, y_{n-1}\right),
$$

where $y_{j}=p\left(\omega_{n}^{j}\right), j=0, \ldots, n-1$.

In words the $n$th order discrete Fourier transform, takes as input the complex coefficients of a degree $n-1$ polynomial $p$, and returns the $n$-dimensional vector whose components are the evaluation of $p$ at each of the $n$th roots of unity. Another way to write $\operatorname{DFT}_{n}\left(c_{0}, \ldots, c_{n-1}\right)$ is $\operatorname{DFT}_{n}(p)$, where $p$ is the polynomial of degree $n-1$ whose coefficients are $c_{0}, \ldots, c_{n-1}$.

Example 3.2. Compute $\mathrm{DFT}_{4}(0,1,2,3)$.

### 3.2 Fast Fourier Transform

We may now write our divide-and-conquer algorithm in terms of $\mathrm{DFT}_{n}$. In what follows we define

$$
\left(u_{1}, \ldots, u_{n}\right) \odot\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1} v_{1}, \ldots, u_{n} v_{n}\right)
$$

which we call the scaling of $v$ with $u$.

## Fast Fourier Transform

Input: polynomial $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$, where $n$ is a power of two.
Output: $\operatorname{DFT}_{n}(A)$.
If $n=1$, then return $\left(a_{0}\right)$.
$Y_{0}=\operatorname{DFT}_{\frac{n}{2}}\left(A_{e}\right)$.
$Y_{0}=Y_{0} \circ Y_{0} . / /$ Concatenate vector $Y_{0}$ with itself.
$Y_{1}=\operatorname{DFT}_{\frac{n}{2}}\left(A_{o}\right)$.
$Y_{1}=Y_{1} \circ Y_{1} . / /$ Concatenate vector $Y_{1}$ with itself.
$Y_{1}=\overrightarrow{\omega_{n}} \odot Y_{1} . / /$ Scale $Y_{1}$ with the length- $n$ vector of $n$th roots of unity.
Return $Y_{0}+Y_{1}$. //Return the vector sum of $Y_{0}$ with $Y_{1}$.

We see that the running time for FFT is $\Theta(n \log n)$, since its running time satisfies

$$
T(n)=2 T(n / 2)+n
$$

Thus, we have found a way to evaluate a polynomial at $n$ points using only a log-linear number of steps!

Example 3.3. Compute $\mathrm{DFT}_{4}(0,1,2,3)$ using the FFT algorithm.

Solution.

## 4 Solving Interpolation with the Inverse DFT

Returning to the alternative polynomial multiplication algorithm, the FFT algorithm allows us to compute $C\left(\omega_{n}^{j}\right)$, for each $j=0,1, \ldots, n-1$. To finish the algorithm, we must find coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$ for which, for each $j=0,1, \ldots, n-1$,

$$
C\left(\omega_{n}^{j}\right)=c_{0}+c_{1} \omega_{n}^{j}+\cdots+c_{n-1} \omega_{n}^{j(n-1)} .
$$

Furthermore, we can write these $n$ equations in matrix form as follows.

$$
\left(\begin{array}{c}
C\left(\omega_{n}^{0}\right) \\
C\left(\omega_{n}^{1}\right) \\
\vdots \\
C\left(\omega_{n}^{n-1}\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{n}^{1} & \cdots & \omega_{n}^{1(n-1)} \\
\vdots & \vdots & \cdots & \vdots \\
1 & \omega_{n}^{n-1} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{n-1}
\end{array}\right)
$$

Letting $F_{n}$ denote the $n \times n$ matrix in the above equation, we leave it as an exercise to show that its inverse is

$$
F_{n}^{-1}=\frac{1}{n}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{n}^{-1} & \cdots & \omega_{n}^{-1(n-1)} \\
\vdots & \vdots & \cdots & \vdots \\
1 & \omega_{n}^{-(n-1)} & \cdots & \omega_{n}^{-(n-1)(n-1)}
\end{array}\right)
$$

Thus, we may compute the coefficients of $C(x)$ as

$$
\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{n-1}
\end{array}\right)=\frac{1}{n}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{n}^{-1} & \cdots & \omega_{n}^{-1(n-1)} \\
\vdots & \vdots & \cdots & \vdots \\
1 & \omega_{n}^{-(n-1)} & \cdots & \omega_{n}^{-(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
C\left(\omega_{n}^{0}\right) \\
C\left(\omega_{n}^{1}\right) \\
\vdots \\
C\left(\omega_{n}^{n-1}\right)
\end{array}\right) .
$$

Thus, for all $j=0,1, \ldots, n-1$, we have

$$
c_{j}=\frac{1}{n}\left(C\left(\omega_{n}^{0}\right)+C\left(\omega_{n}^{1}\right) \omega_{n}^{-j}+\cdots+C\left(\omega_{n}^{n-1}\right) \omega_{n}^{-j(n-1)}\right)
$$

Notice that this equation is essentially the evaluation of polynomial

$$
\frac{1}{n}\left(C\left(\omega_{n}^{0}\right)+C\left(\omega_{n}^{1}\right) x+\cdots+C\left(\omega_{n}^{n-1}\right) x^{n-1}\right)
$$

on input $x=\omega_{n}^{-j}$. This suggests the following definition.

Definition 4.1. Given complex coefficients $y_{0}, \ldots, y_{n-1}$, let $p(x)$ be the polynomial

$$
p(x)=\sum_{k=0}^{n-1} y_{k} x^{k}
$$

Then the $n$th order inverse discrete Fourier transform is the function

$$
\operatorname{DFT}_{n}^{-1}\left(y_{0}, \ldots, y_{n-1}\right)=\left(c_{0}, \ldots, c_{n-1}\right)
$$

where $c_{j}=\frac{1}{n} p\left(\omega_{n}^{-j}\right), j=0, \ldots, n-1$.

In words the $n$th order inverse discrete Fourier transform, takes as input the complex coefficients of a degree $n-1$ polynomial $p$, and returns the $n$-dimensional vector whose components are the evaluation of $\frac{1}{n} p(x)$ at each of the inverses of the $n$th roots of unity.

### 4.1 The Inverse Fast Fourier Transform

We may provide a similar divide-and-conquer algorithm for computing $\mathrm{DFT}_{n}^{-1}$ which we call the Inverse Fast Fourier Transform (IFFT).

## Inverse Fast Fourier Transform

Input: polynomial $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$, where $n$ is a power of two.
Output: $\operatorname{DFT}_{n}^{-1}(A)$.
If $n=1$, then return $\left(a_{0}\right)$.
$Y_{0}=\operatorname{DFT}_{\frac{n}{2}}^{-1}\left(A_{e}\right)$.
$Y_{0}=Y_{0} \circ Y_{0} . / /$ Concatenate vector $Y_{0}$ with itself.
$Y_{1}=\operatorname{DFT}_{\frac{n}{2}}^{-1}\left(A_{o}\right)$.
$Y_{1}=Y_{1} \circ Y_{1}$. //Concatenate vector $Y_{1}$ with itself.
$Y_{1}=\omega_{n}^{-1} \odot Y_{1}$. //Scale $Y_{1}$ with the respective inverses of the $n$th roots of unity.
Return $\frac{1}{2}\left(Y_{0}+Y_{1}\right)$. //Return the vector sum of $Y_{0}$ with $Y_{1}$.

Notice that in the final line we must scale the vector by $1 / 2$. This is because both $\operatorname{DFT}_{\frac{n}{2}}^{-1}\left(A_{e}\right)$ and $\operatorname{DFT}_{\frac{n}{2}}^{-1}\left(A_{o}\right)$ give the polynomial evaluations divided by $n / 2$. However, we want both to be divided by $n$. So we must multiply by $n / 2$ to undo the division by $n / 2$, and then divide by $n$, which has the net effect of multiplying by $1 / 2$.

Example 4.2. Compute $\operatorname{DFT}_{4}^{-1}(0,1,-1,2)$ by a) using the definition of $\operatorname{DFT}_{4}^{-1}(0,1,-1,2)$, and $\left.b\right)$ using the IFFT algorithm on $\operatorname{DFT}_{4}^{-1}(0,1,-1,2)$.

### 4.2 Summary

$D F T_{n}(p)$ The discrete Fourier transform that evaluates an $(n-1)$-degree polynomial $p$ at each of the $n$th roots of unity and returns a vector of these evaluations.

FFT An algorithm for computing $D F T_{n}(p)$ in $\mathrm{O}(n \log n)$ steps when $n$ is assumed a power of 2 .
$D F T_{n}^{-1}(p)$ The inverse discrete Fourier transform that evaluates an $(n-1)$-degree polynomial $p$ at each multiplicative inverse of each $n$th root of unity, and returns a vector of these evaluations scaled by $\frac{1}{n}$. Moreover if the coefficients of $p$ are the values $q\left(\omega_{n}^{0}\right), q\left(\omega_{n}^{1}\right), \ldots, q\left(\omega_{n}^{n-1}\right)$, for some ( $n-1$ )-degree polynomial $q$, then $D F T_{n}^{-1}(p)$ outputs the coefficients of $q$, meaning that it solves the problem of polynomial interpolation with respect to $q$

IFFT An algorithm for computing $D F T_{n}^{-1}(p)$ in $\mathrm{O}(n \log n)$ steps when $n$ is assumed a power of 2 .

## Exercises

1. Prove that for any two complex numbers $c$ and $d, \overline{c d}=\bar{c} \bar{d}$
2. Determine the complex cube roots of unity.
3. Determine the complex 8 th roots of unity.
4. For the 8th roots of unity, determine the inverse of each group element, and verify that ( $a+$ $b i)(a+b i)^{-1}=1$ through direct multiplication.
5. Let $n \geq 1, d>0$, and $k$ be integers. Prove that $\omega_{d n}^{d k}=\omega_{n}^{k}$. This is called the cancellation rule.
6. Let $n$ be an even positive integer. Prove that the square of each of the $n$th roots of unity yields the $n / 2$ roots of unity. Moreover, each $n / 2$ root of unity is associated with two different squares of $n$th roots of unity.
7. Show that $\omega_{n}^{n / 2}=-1$, for all even $n \geq 2$.
8. For positive integer $n$ and for integer $j$ not divisible by $n$, prove that

$$
\sum_{k=0}^{n-1} \omega_{n}^{j k}=0
$$

Hint: use the geometric series formula

$$
\sum_{k=0}^{n-1} a^{k}=\frac{a^{n}-1}{a-1}
$$

which is valid when $a$ is a complex number.
9. Find the equation of the quadratic polynomial whose graph passes through the points $(2,13)$, $(-1,10)$, and $(3,26)$.
10. Find the equation of the cubic polynomial whose graph passes through the points $(0,-1),(1,0)$, $(-1,-4)$, and $(2,5)$.
11. Compute $\operatorname{DFT}_{4}(1,-1,2,4)$ using the definition.
12. Compute $\mathrm{DFT}_{4}(-1,3,4,10)$ using the definition.
13. Compute $\mathrm{DFT}_{4}^{-1}(0,0,-4,0)$ using the definition.
14. Compute $\mathrm{DFT}_{4}^{-1}(2,1-i, 0,1+i)$ using the definition.
15. Show the sequence of polynomials that are evaluated when evaluating $p(x)=x^{3}-3 x^{2}+5 x-6$ using Horner's algorithm. Use the algorithm to evaluate $p(-2)$.
16. Show the sequence of polynomials that are evaluated when evaluating $p(x)=2 x^{4}-x^{3}+2 x^{2}+$ $3 x-5$ using Horner's algorithm. Use the algorithm to evaluate $p(5)$.
17. Use the FFT algorithm to compute $\operatorname{DFT}_{4}(1,-1,2,4)$.
18. Use the FFT algorithm to compute $\mathrm{DFT}_{4}(-1,3,4,10)$.
19. Compute $\mathrm{DFT}_{4}^{-1}(0,0,-4,0)$ using the definition.
20. Compute $\mathrm{DFT}_{4}^{-1}(2,1-i, 0,1+i)$ using the definition.
21. Use the IFFT algorithm to compute $\operatorname{DFT}_{4}^{-1}(0,0,-4,0)$.
22. Use the IFFT algorithm to compute $\mathrm{DFT}_{4}^{-1}(2,1-i, 0,1+i)$.

## Exercise Solutions

1. Let $c=a+b i$, and $d=e+f i$. Then

$$
\overline{c d}=\overline{(a e-b f)+i(a f+b e)}=(a e-b f)-i(a f+b e) .
$$

On the other hand,

$$
\text { overlinec } \bar{d}=(a-b i)(e-f i)=(a e-b f)+i(-a f-b e)=(a e-b f)-i(a f+b e),
$$

which proves the claim.
2. For $j=0$,

$$
e^{\frac{(2 \pi)(0) i}{3}}=1
$$

For $j=1$,

$$
e^{\frac{2 \pi i}{3}}=-1 / 2+\frac{\sqrt{3} i}{2}
$$

For $j=2$,

$$
e^{\frac{4 \pi i}{3}}=-1 / 2-\frac{\sqrt{3} i}{2}
$$

3. For $j=0$,

$$
e^{\frac{(2 \pi)(0) i}{3}}=1
$$

For $j=1$,

$$
e^{\frac{\pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2} i}{2}
$$

For $j=2$,

$$
e^{\frac{\pi i}{2}}=i
$$

For $j=3$,

$$
e^{\frac{3 \pi i}{4}}=\frac{-\sqrt{2}}{2}+\frac{\sqrt{2} i}{2}
$$

For $j=4$,

$$
e^{\pi i}=-1
$$

For $j=5$,

$$
e^{\frac{5 \pi i}{4}}=\frac{-\sqrt{2}}{2}+\frac{-\sqrt{2} i}{2}
$$

For $j=6$,

$$
e^{\frac{3 \pi i}{2}}=-i
$$

For $j=7$,

$$
e^{\frac{7 \pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{-\sqrt{2} i}{2}
$$

4. For example, $\omega_{8}^{2}=i$ while $\omega_{8}^{-2}=\omega_{8}^{6}=-i$, since $(i)(-i)=1$. Similarly, $\omega_{8}^{4}=-1$ while $\omega_{8}^{-4}=\omega_{8}^{4}=-1$, since $(-1)(-1)=1$.
5. By definition,

$$
\omega_{d n}^{d k}=e^{\frac{2 \pi i d k}{d n}}=e^{\frac{2 \pi i k}{n}}=\omega_{n}^{k} .
$$

6. For $j=0, \ldots, n-1$,

$$
\left(\omega_{n}^{j}\right)^{2}=\omega_{n}^{j} \omega_{n}^{j}=\omega_{n}^{2 j}=\omega_{n / 2}^{j},
$$

where the last equality is due to the cancellation rule from Exercise 5. Thus the square of an $n$th root of unity is indeed an $n / 2$ root of unity. Moreover, notice that $j$ ranges from 0 to $n-1$. By definition, when $j$ ranges from 0 to $n / 2-1$, we obtain each $n / 2$ root of unity. Then, due to the cyclic nature of the roots unity, when $j$ ranges from $n / 2$ to $n-1$, we once again obtain each $n / 2$ root of unity. Therefore, each $n / 2$ root of unity $\omega_{n / 2}^{j}$ is the square of exactly two different $n$ th-roots of unity, namely $\left(\omega_{n / 2}^{j}\right)^{2}$ and $\left(\omega_{n / 2}^{j+n / 2}\right)^{2}$.
7. We have, for even $n \geq 2$,

$$
\omega_{n}^{n / 2}=e^{(2 \pi i / n) n / 2}=e^{\pi i}=\cos \pi+i \sin \pi=-1
$$

8. Using the geometric series formula

$$
\sum_{k=0}^{n-1} a^{k}=\frac{a^{n}-1}{a-1}
$$

we have

$$
\begin{gathered}
\sum_{k=0}^{n-1}\left(\omega_{n}^{j}\right)^{k}=\sum_{k=0}^{n-1} \omega_{n}^{j k}= \\
\frac{\omega_{n}^{j n}-1}{\omega_{n}^{j}-1}=\frac{\omega_{1}^{j}-1}{\omega_{n}^{j}-1}=\frac{1-1}{\omega_{n}^{j}-1}=0,
\end{gathered}
$$

where the first equality is due to the cancellation rule, and the 2 nd to last equality is due to the fact that $\omega_{1}^{1}=1$. Notice also that the denominator is not equal to zero, since we assumed $j$ is not divisible by $n$; i.e. $j \not \equiv 0 \bmod n$.
9. We desire a polynomial of the form $c_{0}+c_{1} x+c_{2} x^{2}$. The three points imply the following system of equations.

$$
\begin{gathered}
c_{0}+2 c_{1}+4 c_{2}=13 \\
c_{0}-c_{1}+c_{2}=10 \\
c_{0}+3 c_{1}+9 c_{2}=26
\end{gathered}
$$

Solving this system gives the polynomial $5-2 x+3 x^{2}$.
10. We desire a polynomial of the form $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$. The four points imply the following system of equations.

$$
\begin{gathered}
c_{0}=-1 \\
c_{0}+c_{1}+c_{2}+c_{3}=0 \\
c_{0}-c_{1}+c_{2}-c_{3}=-4 \\
c_{0}+2 c_{1}+4 c_{2}+8 c_{3}=5
\end{gathered}
$$

Solving this system gives the polynomial $-1+x-x^{2}+x^{3}$.
11. $\operatorname{DFT}_{4}(1,-1,2,4)=(6,-1-5 i, 0,-1+5 i)$
12. $\operatorname{DFT}_{4}(-1,3,4,10)=(16,-5-7 i,-10,-5+7 i)$
13. $\mathrm{DFT}_{4}^{-1}(0,0,-4,0)=(-1,1,-1,1)$
14. $\mathrm{DFT}_{4}^{-1}(2,1-i, 0,1+i)=(1,0,0,1)$
15. $p_{0}(x)=1, p_{1}(x)=x p_{0}(x)-3=x-3, p_{2}(x)=x p_{1}(x)+5=x^{2}-3 x+5, p_{3}(x)=x p_{2}(x)-6=$ $x^{3}-3 x^{2}+5 x-6 . p_{0}(-2)=1, p_{1}(-2)=-2(1)-3=-5, p_{2}(-2)=-2(-5)+5=15$, $p_{3}(-2)=-2(15)-6=-36$.
16. $p_{0}(x)=2, p_{1}(x)=x p_{0}(x)-1=2 x-1, p_{2}(x)=x p_{1}(x)+2=2 x^{2}-x+2, p_{3}(x)=x p_{2}(x)+3=$ $2 x^{3}-x^{2}+2 x+3, p_{4}(x)=x p_{3}(x)-5=2 x^{4}-x^{3}+2 x^{2}+3 x-5 . p_{0}(5)=2, p_{1}(5)=5(2)-1=9$, $p_{2}(5)=5(9)+2=47, p_{3}(5)=5(47)+3=238, p_{4}(5)=5(238)-5=1185$.
17. $p_{0}(x)=1+2 x, \operatorname{DFT}_{2}(1+2 x)=(3,-1)$. Thus,

$$
Y_{0}=(3,-1,3,-1)
$$

Also, $p_{1}(x)=-1+4 x$, and $\mathrm{DFT}_{2}(-1+4 x)=(3,-5)$. Thus,

$$
Y_{1}=(3,-5,3,-5) .
$$

Furthermore, $Y_{1 j} \leftarrow \omega_{4}^{j} Y_{1 j}$ gives

$$
Y_{1}=(3,-5 i,-3,5 i) .
$$

Finally, $\operatorname{DFT}_{4}(1,-1,2,4)=Y_{0}+Y_{1}=(6,-1-5 i, 0,-1+5 i)$.
18. $p_{0}(x)=-1+4 x, \operatorname{DFT}_{2}(-1+4 x)=(3,-5)$. Thus,

$$
Y_{0}=(3,-5,3,-5)
$$

Also, $p_{1}(x)=3+10 x$, and $\operatorname{DFT}_{2}(3+10 x)=(13,-7)$. Thus,

$$
Y_{1}=(13,-7,13,-7)
$$

Furthermore, $Y_{1 j} \leftarrow \omega_{4}^{j} Y_{1 j}$ gives

$$
Y_{1}=(13,-7 i,-13,7 i) .
$$

Finally, $\operatorname{DFT}_{4}(-1,3,4,10)=Y_{0}+Y_{1}=(16,-5-7 i,-10,-5+7 i)$.
19. Input $(0,0,-4,0)$ corresponds with polynomial $p(x)=-4 x^{2}$. Moreover,

$$
\begin{gathered}
p\left(\omega_{4}^{(-1)(0)}\right)=p(1)=-4, \\
p\left(\omega_{4}^{-1}\right)=p(-i)=4, \\
p\left(\omega_{4}^{-2}\right)=p(-1)=-4,
\end{gathered}
$$

and

$$
p\left(\omega_{4}^{-3}\right)=p(i)=4 .
$$

Thus,

$$
\operatorname{DFT}_{4}^{-1}(0,0,-4,0)=\frac{1}{4}(-4,4,-4,4)=(-1,1,-1,1),
$$

and so $\mathrm{DFT}_{4}^{-1}(0,0,-4,0)=(-1,1,-1,1)$, which corresponds with polynomial $-1+x-x^{2}+x^{3}$.
20. Input $(2,1-i, 0,1+i)$ corresponds with polynomial $p(x)=2+(1-i) x+(1+i) x^{3}$. Moreover,

$$
\begin{gathered}
p\left(\omega_{4}^{(-1)(0)}\right)=p(1)=4 \\
p\left(\omega_{4}^{-1}\right)=p(-i)=0 \\
p\left(\omega_{4}^{-2}\right)=p(-1)=0
\end{gathered}
$$

and

$$
p\left(\omega_{4}^{-3}\right)=p(i)=4
$$

Thus, $\operatorname{DFT}_{4}^{-1}(2,1-i, 0,1+i)=(1,0,0,1)$,, which corresponds with polynomial $1+x^{3}$.
21. $p_{0}(x)=-4 x, \operatorname{DFT}_{2}^{-1}(-4 x)=\frac{1}{2}(-4,4)=(-2,2)$. Thus,

$$
C_{0}=(-2,2,-2,2) .
$$

Also, $p_{1}(x)=0$, and $\operatorname{DFT}_{2}^{-1}(0)=(0,0)$. Thus,

$$
C_{1}=(0,0,0,0)
$$

Furthermore, $C_{1 j} \leftarrow \omega_{4}^{-j} C_{1 j}$ gives

$$
C_{1}=(0,0,0,0)
$$

Finally, $\operatorname{DFT}_{4}^{-1}(0,0,-4,0)=\frac{1}{2}\left(C_{0}+C_{1}\right)=\frac{1}{2}(-2,2,-2,2)=(-1,1,-1,1)$, which corresponds with polynomial $-1+x-x^{2}+x^{3}$.
22. $p_{0}(x)=2, \operatorname{DFT}_{2}^{-1}(2)=\frac{1}{2}(2,2)=(1,1)$. Thus,

$$
C_{0}=(1,1,1,1) .
$$

Also, $p_{1}(x)=(1-i)+(1+i) x$, and $\operatorname{DFT}_{2}^{-1}((1-i)+(1+i) x)=\frac{1}{2}(2,-2 i)=(1,-i)$. Thus,

$$
C_{1}=(1,-i, 1,-i)
$$

Furthermore, $C_{1 j} \leftarrow \omega_{4}^{-j} C_{1 j}$ gives

$$
C_{1}=(1,-1,-1,1) .
$$

Finally, $\operatorname{DFT}_{4}^{-1}(2,1-i, 0,1+i)=\frac{1}{2}\left(C_{0}+C_{1}\right)=(1,0,0,1)$, which corresponds with polynomial $1+x^{3}$.

