
Kleene’s Second Recursion Theorem and Self-Referencing
Programs

Last Updated March 25th, 2024

Kleene’s Second Recursion Theorem

“Know Thyself”

Socrates

Consider a computable function f(x, y), where x is viewed as a Gödel number of some program and
y is some other input. The following are some statements that could be made in an informal program
that computes f .

� Print the instructions of Px.

� Simulate the computation of Px on input y.

� Count the number of Jump instructions that are executed in the computation of Px on input
y.

� Send program x and input y to another computer in the network.

� Return, as a single natural-number encoding, the tuple of configurations that constitutes the
computation of Px on input y.

1

Now suppose we take f ’s program statements and re-write them in a self-referencing way, to where
we get statements like the following ones.

� Print my instructions.

� Simulate myself on input y.

� Count the number of Jump instructions that I execute when I’m computing input y.

� Send myself and y to another computer in the network.

� Return, as a single natural-number encoding, the tuple of configurations that constitutes my
computation on input y.

A program that makes one or more references to its own Gödel number is said to be self-referencing
(or self-knowing). Note that this is not the same as a recursive program that makes one or more
calls to itself using smaller-sized inputs.

2

Catch-22 for a self-referencing program P

1. For P to know its Gödel number, it must know each of its instructions.

2. Some instructions, such as “print myself”, requires P to know its Gödel number.

Proposed Solution to Catch-22

1. Assume for the sake of argument that, after replacing statements about x with statements
about itself, that there does in fact exist a program Pe with Gödel number e that computes the
resulting function.

2. Then Pe is a function of the single variable y (since variable x has been assigned constant e).

3. Therefore, we have, for all y,
ϕe(y) = f(e, y).

In other words, there is a program Pe that, on input y computes f(e, y), and thus makes
references (to e which been substituted for x) to its own Gödel number.

4. Thus, we have reduced the problem to that of finding a Gödel number e that satisfies the above
equation.

5. Stephen Kleene’s second recursion theorem states that such an e does exist!

Kleene’s Second Recursion Theorem. Let f(x, y) be a computable function that takes as
input a Gödel number x, and some additional input y. Then there is a Gödel number e for which
ϕe(y) = f(e, y).

3

Example 1. Consider the URM computable function f(x, y) which, on inputs x and y, simulates
the computation Px(y), and returns the number of times that a jump instruction is executed during
the computation Px(y). Then by the 2nd recursion theorem, there is a program Pe for which Pe(y) =
f(e, y), and so, for input y, Pe computes the number of times that its own self executes a jump
instruction during its computation with input y.

Suppose P̂ computes f(x, y), meaning P̂ (x, y) = f(x, y) for all inputs x and y.

Interviewer: “What do you do for a living P̂?”

P̂ : “I simulate program Px on input y and output the number of jump instructions that were executed
by Px during the simulation.

Now let e be a Gödel number for which Pe(y) = f(e, y).

Interviewer: “What do you do for a living Pe?”

Pe: “I simulate myself on input y and output the number of jump instructions that my simulated
self made during the simulation.

4

Proof of Kleene’s Second Recursion Theorem. The idea behind the proof is to divide the
construction of the desired program P = ABC into three parts: A, B, and C which we now describe.
Assume that y is the input to P .

Part A. � Move y to register R2.

� Place B’s Gödel number b in R1.

Part B. � Use b in R1 to compute A’s Gödel number a.

� Compute C’s Gödel number c.

� Compute
e = γ(γ−1(a), γ−1(b)γ−1(c)) = γ(ABC) = γ(P),

the Gödel number of the concatenation of A’s, B’s, and C’s instructions.

� Place e in R1, with y remaining in R2.

Part C. Compute f(e, y).

Notes.

1. The most straightforward of the three is part C, since its sole purpose is to compute function f
which is assumed URM computable, and so C’s instructions consist of the instructions of the
URM program used to compute f .

2. The clever part of the above program is understanding how A is able to compute B’s Gödel
number and vice versa. This is actually made possible by an elementary use of the s-m-n
theorem.

3. Consider the function g(x, y) = x. By the s-m-n theorem, there is a total computable function
k(x) for which

ϕk(x)(y) = g(x, y) = x.

Thus, ϕk(x)(y) is a constant function which, for any input y, always outputs x (in register R1).

4. Then define A’s Gödel number to be equal to k(b). This works because, on input y, program
A outputs

ϕk(b)(y) = b

in register R1, and has the side effect of placing y in R2 via an initial T (1, 2) statement.
Therefore A works in exactly the way it was described in Part A above.

5

Given that a = k(b) we may now describe B’s program as follows.

Program B

Input Gödel number z.

Compute Gödel number k(z).

Compute c = γ(C).

Return
γ(γ−1(k(z)), γ−1(z), c).

Important: notice that B’s program does not depend on knowing A’s Gödel number a. If it did, then
it would create a circularity error, since a = k(b) already depends on B’s Gödel number. However,
B is able to compute a once it has its own Gödel number z = b since step 2 of its algorithm yields
a = k(b).

6

Thus, we see that, after the execution of A on input y, B receives input z = b which gives

a = k(z) = k(b),

and so B outputs into R1 the value

e = γ(γ−1(a), γ−1(b), γ−1(c)) = γ(ABC) = γ(P).

The following diagram shows the results of all three programs combined in sequence, where v
X→ w

means that program X inputs v and outputs w. Then we have

y
A→ (b, y)

B→ (e = γ(ABC), y)
C→ f(e = γ(ABC), y).

Therefore, P = ABC = Pe computes
ϕe(y) = f(e, y),

and the proof is complete.

7

Example 2. Program P is called totally introspective iff, on input y, P returns a number that
encodes every configuration of the computation of itself on input y. Letting σ(x, y, i) denote the
encoding of the i th configuration of the computation Px(y), then we define the computable function

f(x, y) =

{
τ(σ(x, y, 0), σ(x, y, 1), . . . , σ(x, y, t)) if Px(y) halts in t steps
undefined otherwise

Now, by the 2nd recursion theorem, there exists a Gödel number e for which ϕe(y) = f(e, y), meaning
that Pe is totally introspective, since, on input y, if Pe(y) is defined, then Pe outputs a τ -encoding of
all the configurations used in its computation Pe(y)!

8

The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P . Namely, we
may make reference to P ’s Gödel number, which is represented with the keyword self. This allows
for programs to become more autonomous and self-adaptable to its environment. For example, a
program can be made to analyze its own data, make adjustments to its algorithm, followed by
re-compilation and execution.

Example. The following are valid programming statements for program P .

void f(unsigned int y)

{

if(y == 0) {print("bad input!\n"); return;}

int length = instructions(self).length;

print("Hi! I have Godel number equal to ");

print(self);

print(".\nI have ");

print(length);

print(" instructions ");

if(y > length)

{

print(" which is fewer than your input ");

print(y);

}

else

{

print("My instruction number ");

print(y);

print(" is ");

print(to_string(instructions(self)[y-1]));

}

print("\n");

}

9

To justify such a program, suppose y ∈ N is the input to P , and the purpose of P is to implement
the unary computable function f(y). Then we may do the following.

1. Transform P by adding another input x, so that we are now implementing function f(x, y).

2. Replace each occurrence of self with x.

void f(unsigned int x, unsigned int y)

{

if(y == 0) {print("bad input!\n"); return;}

int length = instructions(x).length;

print("Hi! I have Godel number equal to ");

print(x);

print(".\nI have ");

print(length);

print(" instructions ");

if(y > length)

{

print(" which is fewer than your input ");

print(y);

}

else

{

print("My instruction number ");

print(y);

print(" is ");

print(to_string(instructions(x)[y-1]));

}

print("\n");

}

3. Use the method described in the proof of Kleene’s 2nd Recursion Theorem to compute an e for
which Pe computes

ϕe(y) = f(e, y).

4. Thus, Pe computes f(y), with e substituted for x.

5. Therefore, Pe’s references to self are justified, since self = e, the Gödel number of the
program that computes f(y).

10

1 Self Reference Portrayed in Art and Mathematics

M.C. Escher’s “Drawing Hands”. 1948

11

M.C. Escher’s “Three Spheres”. 1946

Kurt Gödel: First-Order Peano Arithmetic (FOPA) is incomplete (i.e. not all true statements in
FOPA can be proven true) since there is a logical statement that can be expressed within FOPA and
that asserts it own unprovability within FOPA.

12

Kleene’s 2nd Recursion Theorem and Undecidability

The self programming construct that is made possible by Kleene’s 2nd Recursion theorem may
be readily used to prove the undecidability of most program properties, including the properties
Self Accept, Halting Problem, Total, and Zero from the Undecidability and the Diagonalization
Method lecture. The idea is outlined as follows.

1. Let A be a program property that we want to prove is undecidable.

2. Let dA(x) denote A’s decision function.

3. Assume A is decidable in which case dA(x) is total computable.

4. Consider the following program P .

Input y ∈ N .

If dA(self) = 1, //P has property A.

Return a value that implies P does not have property A.

Else //dA(self) = 0 and thus P does not have property A.

Return a value that implies P does have property A.

5. Regardless of whether or not P has propertyA, a contradiction arises. Therefore, the assumption
that A is decidable must be false.

13

Example 3. We prove that Halting Problem is undecidable.

Solution. Suppose Halting Problem is decidable, i.e.

H(x, y) =

{
1 if y ∈ Wx

0 otherwise

is total computable. Now consider the following program P .

Input y ∈ N .

If H(self, y) = 1, loop forever.

Return 1.

Let e = self denote the Gödel number for P . Then Pe(e) = 1 provided H(e, e) = 0 iff Pe(e) does not
halt, a contradiction. Similarly, Pe(e) does not halt provided H(e, e) = 1 iff Pe(e) does halt, another
contradiction. Therefore, the assumption that Halting Problem is decidable must be false.

14

Example 4. Prove that the Total decision problem is undecidable. Also, give examples of programs
P1 and P2 for which dTotal(γ(P1)) = 1 and dTotal(γ(P2)) = 0.

Solution.

15

Example 4b. An instance of the decision problem One-to-One is a Gödel number x, and the
problem is to decide if function ϕx is a one-to-one function, meaning that, for every z in the range of
ϕx, there is exactly one y for which ϕx(y) = z. Consider the One-to-One decision function

g(x) =

{
1 if ϕx is one-to-one
0 otherwise

Evaluate g(x) for each of the following Gödel number’s x.

1. x = e1, where e1 is the Gödel number of the program that computes the function ϕe1(y) =
sgn(y). Hint: recall that sgn(y) equals 1 if y > 0, and equals 0 otherwise.

2. x = e2, where e2 is the Gödel number of the program that computes the function ϕe2(y) = y2.

3. x = e3, where e3 is the Gödel number of the program that computes g(x) (assuming that g(x)
is URM computable).

Prove that g(x) is not URM computable. In other words, there is no URM program that, on input x,
always halts and either outputs 1 or 0, depending on whether or not ϕx is a one-to-one function. Do
this by writing a program P that uses g and makes use of the self programming construct. Then
show how P creates a contradiction.

16

Other Applications of Kleene’s 2nd Recursion Theorem

A subset A ⊂ N of the natural numbers is said to be recursively enumerable iff there is a program
that can print all the members of A in a (possibly infinite) list, in no particular order. Also, we say
that decision problem A is recursively enumerable if the set of positive instances of A is recursively
enumerable.

Note: A is recursively enumerable iff there is a total computable function f for which A = range(f).

Example. Show that the set of even natural numbers is recursively enumerable.

Solution. The following program prints all even natural numbers.

Input x ∈ N .

For each i = 0, 1, . . .

Print 2i.

17

Theorem. If decision problem A is decidable, then it is recursively enumerable.

Proof. Let dA(x) denote A’s decision function. Since A is decidable there is a program P that halts
on all inputs, and for which P (x) = dA(x) for all x ∈ A. Then the following program prints all the
positive instances of A.

For each i = 0, 1, . . .,

Simulate P on input i.

If P (i) = 1, then print i.

18

Example. Show that Self Accept is recursively enumerable, i.e. we can print the set {i|Pi(i) ↓}.

Solution. The idea is to simultaneously simulate all computations Pi(i), i ≥ 0. This is accomplished
by breaking up the process into rounds 0, 1, 2, . . . where in Round i we perform a simulation step for
each of P0(0), . . . , Pi(i). The following program does this.

Initialize infinite Boolean array printed so that printed[i] = 0, for all i = 0, 1,

Initialize infinite Configuration array config so that config[i] = ∅, for all i = 0, 1,

For each i = 0, 1, . . .,

For each j = 0, 1, . . . , i,

If printed[j] = 1, then continue. //j has already been printed

If j < i, then

If is final config[j], then

1. Print j.

2. printed[j] = 1

Else config[j] = next config(j, config[j]).

Else config[i] = initial config(i).

19

Program Px is said to minimal iff there is no y < x for which ϕy = ϕx. In other words, x is an index
for ϕx and there is no smaller index.

Example. Complete the following table.

Gödel Number/index Program Function Minimal?
0 P0 = Z(1) ϕ0(z) = 0 Yes

1 P1 = S(1) ϕ1(z) = 1 Yes

2 P2 = T (1, 1) ϕ2(z) =

3 P3 = J(1, 1, 1) ϕ3(z) =↑ Yes

4 P4 = Z(2) ϕ4(z) =

5 P5 = S(2) ϕ4(z) =

20

Theorem 3. If M denotes the set of all Gödel numbers x for which Px is minimal, then W is not
recursively enumerable.

Proof of Theorem 3. Suppose M is recursively enumerable. Then it is an exercise to show
that there is a total computable unary function f whose range is equal to M . In other words
M = {f(i)|i ∈ N}. Consider the following program P .

Input x ∈ N .

For each i = 0, 1, . . .

If f(i) > self, then break.

Simulate program Pf(i) on input x, and return y in case Pf(i)(x) ↓ y.

Let e be the Gödel number of P . Then it follows that ϕe = ϕf(i). But f(i) > e which contradicts the
fact that f(i) ∈ M . Therefore, the assumption that M is r.e. must be false.

21

Theorem 4. Let f be a total computable unary function. Then there is a number n ∈ N for which
ϕn = ϕf(n). We refer to n as a fixed point for f .

Proof of Theorem 4. Consider the following program P .

Input x ∈ N .

Compute y = f(self).

Simulate program Py on input x, and return z in case Py(x) ↓ z.

Then
ϕy = ϕf(self) = ϕself,

and so n = self is a fixed point for f .

22

An Application to Complexity Theory

The self programming construct may be applied to obtain a relatively simple proof of a fundamental
theorem in complexity theory called the Time Hierarchy Theorem.

Time Hierarchy Theorem. Let t(n) ≥ n log n be a computable function, for which the value t(n)
may be computed in O(t(n)) steps. Then there is a decision problem L that may be decided in
O(t(n)) steps, but cannot be decided in o(t(n)/ log n) steps.

Corollary. For any positive integer k ≥ 2, there is a decision problem that can be decided in O(nk)
steps, yet cannot be decided in O(nk−1) steps.

For example, there is a decision problem that can be decided within a cubic (i.e. O(n3)) number of
steps, yet cannot be decided within a quadratic (i.e. O(n2)) number of steps.

23

Exercises

1. With respect to Kleene’s 2nd Recursion Theorem, prove that there are infinitely many values
e for which ϕe(y) = f(e, y). Hint: consider program B in the proof of the theorem.

2. Recall that a function f : N → N is onto provided for every y ∈ N there is an x ∈ N for
which f(x) = y. Consider the function

g(x) =

{
1 if ϕx is onto
0 otherwise

Evaluate g(a), g(b), and g(c), where

(a) ϕa(y) = y2

(b) ϕb(y) = 1

(c) ϕc(y) = y.

3. Prove that the function

g(x) =

{
1 if ϕx is onto
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not ϕx is onto. Do this by
writing a program P that uses g and makes use of the self programming construct.

4. Recall that Wx denotes the domain of the function ϕx(y), i.e. the natural number inputs y to
ϕx for which ϕx(y) is defined. Consider the function

g(x) =

{
1 if Wx = ∅
0 otherwise

Evaluate g(a), g(b), and g(c), where

(a) Pa = S(2), S(2), S(1), J(1, 2, 6), J(1, 1, 3)

(b) Pb = S(2), J(2, 3, 3), J(1, 1, 1)

(c) Pc = S(1), S(1), S(2), J(1, 2, 6), J(1, 1, 1)

5. Prove that the function

g(x) =

{
1 if Wx = ∅
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not ϕx has an empty domain.
Do this by writing a program P that uses g and makes use of the self programming construct.
Then show how P creates a contradiction.

6. Consider the function

g(x) =

{
1 if |Ex| = ∞
0 otherwise

In other words g(x) = 1 iff function ϕx(y) has an infinite range, meaning that it outputs an
infinite number of different values. Evaluate g(a), g(b), and g(c), where

24

(a) ϕa(y) = y2

(b) ϕb(y) = y

(c) ϕc(y) = sgn(y).

7. Prove that the function

g(x) =

{
1 if |Ex| = ∞
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not ϕx has an infinite range.
Do this by writing a program P that uses g and makes use of the self programming construct.
Then show how P creates a contradiction.

8. Rice’s theorem states that if C1 denotes the set of unary computable functions, and B is a
nonempty proper subset of C1, then the predicate function

B(x) =

{
1 if ϕx ∈ B
0 otherwise

is undecidable. Prove Rice’s theorem by writing an informal program P that uses B(x) and
makes use of the self programming construct. Then show how P creates a contradiction.
Hint: assume B(x) is decidable, and take advantage of the fact that the set of functions B is
both nonempty and not all of C1.

9. For each constant n ≥ 1, show that ⌊x1/n⌋ is a primitive-recursive function of x.

10. Prove that there exists an n for which ϕn(x) = ⌊x1/n⌋. Hint: use the s-m-n theorem and
Theorem 4.

11. Recall that program Px has the self-output property iff x ∈ Ex. By writing an informal program
that makes use of the programming construct self, prove that the self-output property is
undecidable.

12. Show that there is a number e for which ϕe(x) = e10, for all x ∈ N .

13. Consider the following description of a function f(n). On input n, return the Gödel number
of the program P ′ that is the result of appending program Pn with a minimum number of
successor instructions S(1), . . . , S(1) so that it is always guaranteed that, should Pn halt on
an input, then the final instruction of P ′ will be one of these successor instructions. Then by
the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for
f(n), i.e. ϕn = ϕf(n), then necessarily ϕn(x) is undefined for all x.

Exercise Solutions

1. Since the proof of Kleene’s 2nd Recursion Theorem constructs e as e = γ(ABC), by changing
the instructions of B, we get a new value for e, since B has changed. We only have to make
sure that B’s instructions are changed in a trivial way that does not affect its functionality as
described in the proof.

25

2. A function ϕx(y) is onto iff Ex = N , where Ex denotes the range of ϕx. Thus,

(a) g(a) = 0 since ϕa(y) = y2 is not onto since Ea = {1, 4, 9, 25, . . .} ≠ N ,

(b) g(b) = 0 since ϕb(y) = 1 is not onto since Eb = {1} ≠ N , and

(c) g(c) = 1 since ϕc(y) = y is onto since Ec = N .

3. We have the following program P .

Input y ∈ N .

If g(self) = 1, loop forever.

Return y;

If g(self) = 1, then P has a range equal to N which is impossible since it does not terminate
on any input (loops forever). If g(self) = 0, then P does not have a range equal to N , which
is contradicted by the fact that P returns y on input y, and so has the set of return values
{0, 1, . . .} = N .

4. We have the following answers.

(a) g(a) = 0 since Pa terminates on input 1 (verify!) and thus Wa = {1} ≠ ∅.
(b) g(b) = 1 since Pb does not terminate on any input (why?) and thus Wb = ∅.
(c) g(c) = 1 since Pc does not terminate on any input (why?) and thus Wc = ∅.

5. We have the following program P .

Input y ∈ N .

If g(self) = 1, Return 0.

Loop Forever.

If g(self) = 1, then it means Wself = ∅, but P returns 0 for each input y, which implies
Wself = N , a contradiction.

If g(self) = 0, then it means Wself ̸= ∅, but P loops forever on each input y, which implies
Wself = ∅, a contradiction.

6. We have the following answers.

(a) g(a) = 1 since ϕa(y) = y2 has an infinite range: Ea = {1, 4, 9, 25, . . .},
(b) g(b) = 1 since ϕb(y) = y has an infinite range Eb = N , and

(c) g(c) = 0 since ϕc(y) = sgn(y) has finite range equal to {0, 1}.

7. Consider the following program P .

Input y ∈ N .

If g(self) = 1, Return 0.

Return y.

26

If g(self) = 1, then it means |Eself| = ∞, but the program returns 0 for each input y, which
implies Eself = {0} which is finite, a contradiction.

If g(self) = 0, then it means |Eself| is finite, but the program returns y on each input y, which
implies Eself = N , a contradiction.

8. Assume B(x) is decidable. Since B is nonempty there exists a unary computable function
f ∈ B. Similarly, since B is not all of C1, there is a unary computable function g ̸∈ B. Now
consider the following program P .

Input x ∈ N .

If B(self) = 1,

Simulate g on input x.

Return g(x) if it is defined.

Simulate f on input x.

Return f(x) if it is defined.

Since f and g are computable, so is P . Let e denote the Gödel number of P . Assume B(e) = 1.
By definition, this means that ϕe ∈ B. But in examining P we see that P simulates g so that
ϕe = g ̸∈ B, a contradiction. Similarly, if B(e) = 0, then ϕe ̸∈ B. But in this case P simulates
f so that ϕe = f ∈ B, a contradiction. Therefore, B cannot be decidable.

9. The function ⌊x1/n⌋ may be computed as

µ(z ≤ x)(zn > x)− 1.

10. Function f(n, x) = ⌊x1/n⌋ is computable by the previous exercise. Therefore, by the s-m-n
theorem, there exists a total computable function k(n) for which ϕk(n)(x) = ⌊x1/n⌋. Finally, by
Theorem 4, there is an integer n for which

ϕn(x) = ϕk(n)(x) = ⌊x1/n⌋.

11. Assume E(x) is decidable, where E(x) = 1 iff x ∈ Ex. Now consider the following program P .

Input x ∈ N .

If E(self) = 1,

Loop forever.

Return self.

Since E(x) is decidable, P is computable. Let e denote the Gödel number of P . Assume
E(e) = 1. By definition, this means that e ∈ Ee, meaning that P returns e on some input
x. However, since E(e) = 1, P does not terminate on any input, meaning that Ee = ∅, a
contradiction.

Similarly, if E(e) = 0, then e ̸∈ Ee. But in this case P returns e, meaning that e ∈ Ee, a
contradiction. Therefore, E(x), i.e. the Self-Output property, is not decidable.

27

12. Function f(y, x) = y10 is primitive recursive, and hence computable. Therefore, by the s-m-n
theorem, there exists a total computable function k(y) for which ϕk(y)(x) = y10. Finally, by
Theorem 4, there is an integer e for which

ϕe(x) = ϕk(e)(x) = e10

for all x ∈ N .

13. Since f(n) is total computable, by Theorem 4 there is an integer n for which ϕn(x) = ϕf(n)(x)
for all x ∈ N . But the way in which Gödel number f(n) is constructed is such that, whenever
ϕn(x) = y is true, then Pn halts, which in turn implies that Pf(n) halts with ϕf(n)(x) = y + 1,
since Pf(n) is the same as Pn, except that in its final instruction it adds 1 to register R1. Thus,
if ϕn(x) is defined, then we have ϕn(x) = y ̸= ϕf(n)(x) = y + 1. Therefore, we must conclude
that ϕn(x) must always be undefined, meaning that Wn = ∅.

28

