The PSPACE Complexity Class

Last Updated April 19th, 2024

1 Polynomial Space

Definition 1.1. PSPACE represents those decision problems that are decidable using a polynomial amount of space. In other words,

$$
\operatorname{PSPACE}=\bigcup_{k \geq 1} \operatorname{SPACE}\left(n^{k}\right)
$$

Proposition 1.2. The following inclusions hold.

$$
P \subseteq N P \subseteq P H \subseteq P S P A C E=N P S P A C E \subseteq \text { EXPTIME }
$$

Proof. The first inclusion is Theorem 4.9 of the Complexity lecture. The second inclusion follows from the definition of PH. The equality PSPACE $=$ NPSPACE follows from Savitch's theorem, and the final inclusion follows from Lemma 1.5 of the Space Complexity lecture. All that remains to show is that $\mathrm{PH} \subseteq$ PSPACE. To this end, let $L \in \Sigma_{k}^{p}$ be given, and let $Q_{1} x_{1} \cdots Q_{k} x_{k} p\left(x_{1}, \ldots, x_{k}, y\right)$ be the predicate function associated with L. Consider the following recursive algorithm for evaluating L 's predicate function.

Name: eval
Inputs:

1. instance y of decision problem L,
2. (possibly empty) list $L=\left[c_{1}, c_{2}, \ldots, c_{l}\right], l \geq 1, c_{j} \in C_{j}=\operatorname{dom}\left(x_{j}\right), 1 \leq j \leq l$.

Output: $Q_{l+1} x_{l+1} \cdots Q_{k} x_{k} p\left(c_{1}, \ldots, c_{l}, x_{l+1}, \ldots, x_{k}, y\right)$.
If $l=\operatorname{length}(L)=k$, then return $p\left(c_{1}, \ldots, c_{k}, y\right)$.
If $l+1$ is odd, then $/ / Q_{l+1}=\exists$
For each $d \in C_{l+1}$,
If eval $(y, L+d)=1$, then return 1 .
Return 0 .
Else $/ / Q_{l+1}=\forall$
For each $d \in C_{l+1}$, If $\operatorname{eval}(y, L+[d])=0$, then return 0.

Return 1.

Since predicate function p is decidable in polynomial-time, it is also decidable using a polynomial amount of space. Therefore, the base is computable in a polynomial amount of space. As for the recursive cases, notice that the required memory consists of i) at most k counters, each having $\mathrm{O}(q(|y|)$ bits and ii) list L whose size is also $\mathrm{O}(q(|y|)$ which is a bound for each of the at most k certificates that are stored in L at any given time. Therefore, the algorithm requires a polynomial amount of space.

2 Quantified Boolean Formula

Definition 2.1. A quantified Boolean formula is a Boolean formula of the form

$$
Q_{1} x_{i_{1}} \cdots Q_{k} x_{i_{k}} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

where each Q_{j} is a quantifier, each $x_{i_{j}}$ a Boolean variable, $1 \leq j \leq k$, and $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Boolean formula.

Notes:

1. The above definition actually defines a special case of QBF's known as those in prenex normal form, meaning that the quantifiers are written first, followed by an unquantified Boolean formula ϕ. However, every QBF F is logically equivalent to one, call it F^{\prime}, that is in prenex normal form and the construction of F^{\prime} can be done efficiently relative to the size of F.
2. When each variable x_{i} of ϕ is bounded by a quantifier Q_{i}, then we have what is called a totally quantified Boolean formula (TQBF), and in this case it follows that every TQBF has a single evaluation of either 0 or 1 . For example, the Boolean formula $x \vee y$ has four different evaluations depending on each of the four possible ways of assigning the variables x and y. However, the statment $\exists x \forall y(x \vee y)$ has the single evaluation of 1 , since it is a true statement that "there exists an x (namely $x=1$) such that, for every possible way of assigning a value to y (0 or 1), $x \vee y$ evaluates to 1 ". In what follows, we assume each QBF of interest is a TQBF.

Example 2.2. Consider a graph $G=(A \cup B \cup C, E)$ that has three sets of vertices: $A=\{a, b, c\}$, $B=\{1,2,3,4\}$, and $C=\{\alpha, \beta\}$. For each of the following predicate logic formulas, draw the smallest possible (in terms of number of edges) version of G for which the formula evaluates to true. Each statement assumes that i) $\operatorname{dom}(x)=A$, ii) $\operatorname{dom}(y)=B$, and $\operatorname{dom}(z)=C$.

1. $\exists x \forall y \exists z((x, y) \in E \wedge(y, z) \in E)$
2. $\forall x \exists y \forall z((x, y) \in E \wedge(y, z) \in E)$

Solution.

Example 2.3. Evaluate the QBF $\forall x \exists y((x \vee y) \wedge(\bar{x} \vee \bar{y}))$.
Solution.

Example 2.4. Evaluate the QBF $\exists x \forall y \forall z((x \vee \bar{y}) \wedge(z \wedge x))$.

Solution.

3 PSPACE Completeness

Definition 3.1. A decision problem B is said to be PSPACE-complete iff

1. $B \in \operatorname{PSPACE}$
2. for every other decision problem $A \in \operatorname{PSPACE}, A \leq_{m}^{p} B$.

Definition 3.2. An instance of Totally Quantified Boolean Formula (TQBF) is totally quantified Boolean formula F, and the problem is to decide if F evaluates to 1 .

It may not seem too surprising that TQBF is our first PSPACE-complete problem since it generalizes both SAT and the Polynomial Hierarchy for the following reasons.

1. Every instance $F\left(x_{1}, \ldots, x_{n}\right)$ of SAT is a special case of TQBF in that the satisfiability of F is equivalent to

$$
\exists x_{1} \cdots \exists x_{n} F\left(x_{1}, \ldots, x_{n}\right)
$$

evaluating to 1 .
2. For every $k \geq 0$, an instance y of a decision problem $L \in \Sigma_{k}^{p}$ (respectively, $L \in \Pi_{k}^{p}$) may be expressed as an instance of TQBF via a binary encoding of y, each of the certificate variables x_{1}, \ldots, x_{k}, along with a conversion of the predicate function p to a Boolean formula whose variables are the Boolean encoding variables of y, x_{1}, \ldots, x_{k}.
3. The recursive algorithm similar to the one presented in the proof of Proposition 1.2 may be used to evaluate a TQBF using a polynomial amount of space.

Theorem 3.3. TQBF is PSPACE-complete.

Proof. Let $L \in$ PSAPCE be given via DTM M that decides L using an amount of space that is bounded by n^{k}, for some constant $k \geq 1$, where $n=|x|$ is the size of input instance x of L. We must construct a TQBF F that evaluates to 1 iff $M(x)=1$ and whose size (i.e. number of variables, quantifiers, and logic operations used) is also bounded by a polynomial with respect to n. The strategy we use is to represent as a TQBF the statement

$$
\phi\left(c_{1}, c_{2}, t\right)
$$

which evaluate to 1 iff configuration c_{2} is reachable from c_{1} in t or fewer steps, where c_{1} and c_{2} are possible configurations that may appear in the computation of M on input x. Thus, these configurations have a length at most $\mathrm{O}\left(n^{k}\right)$ and t has a size that is no greater than $2^{d n^{k}}$, for some constant integer $d>0$. Thus, thinking of ϕ as a function, we would intially set $c_{1}=c_{\text {init }}, c_{2}=c_{\text {final }}$, and $t=2^{d n^{k}}$, where $c_{\text {init }}$ is an initial configuration with x placed on the tape as input, and $c_{\text {final }}$ is a unique accepting state (say, in the accept state with the head at cell 1 , all cells holding some common symbol in Γ).

Now, given arbitrary c_{1}, c_{2}, and t, We now provide a recursive formula for expressing $\phi\left(c_{1}, c_{2}, t\right)$ as a TQBF of polynomial size with respect to $n=|x|$.

Base Case $t=1$. In this case $\phi\left(c_{1}, c_{2}, t\right)$ may either written as the Boolean formula $c_{1}=c_{2}$ or as the Boolean formula that evaluates to $1 \mathrm{iff} c_{2}$ is reachable from c_{1} in a single step.
For the case of $c_{1}=c_{2}$, since each configuration can be expressed using $\mathrm{O}\left(n^{k}\right)$ Boolean variables, and we must check for pairwise equality between the variables used to encode c_{1} and the variables used for c_{2}, it follows that $c_{1}=c_{2}$ may be expressed with a (quantifier free) Boolean formula having size $\mathrm{O}\left(n^{k}\right)$.
As for the latter case, see the proof of Cook's theorem for a list of each of the (quantifier free) Boolean formulas that must be supplied in order to check if c_{2} is the next configuration after c_{1}. Together, these formulas have a size equal to $\mathrm{O}\left(n^{2 k}\right)$.
Recursive Case $t=2^{j}, j \geq 1$. Then for $\phi\left(c_{1}, c_{2}, t\right)$ to evaluate to 1 , there must exist a middle configuration m such that for all configurations c_{3} and c_{4}, if $c_{3}=c_{1}$ and $c_{4}=m$, of if $c_{3}=m$ and $c_{4}=c_{2}$, then $\phi\left(c_{3}, c_{4}, \frac{t}{2}\right)$ must evaluate to 1 . As a predicate-logic formula this may be written as

$$
\exists m \forall c_{3} \forall c_{4}\left(\left(\left(c_{3}=c_{1}\right) \wedge\left(c_{4}=m\right)\right) \vee\left(\left(c_{3}=m\right) \wedge\left(c_{4}=c_{2}\right)\right) \rightarrow \phi\left(c_{3}, c_{4}, \frac{t}{2}\right)\right)
$$

Notice that, because of the clever use of alternating quantifiers, the recursion tree has a single branch with depth $\log \left(2^{d n^{k}}\right)=d n^{k}$. Moreover, at each (non-leaf) level of the tree, we add $\mathrm{O}\left(n^{k}\right)$ amount of quantifiers, Boolean variables, and logic operations. This is because the configurations m, c_{3}, and c_{4} are encoded using $\mathrm{O}\left(n^{k}\right)$ Boolean variables, and the four equality statements, as noted in the base case description, require at most $\mathrm{O}\left(n^{k}\right)$ operations. Finally, at the bottom level of recursion when $t=0, \mathrm{O}\left(n^{2 k}\right)$ additional operations are required. Thus, the final formula size equals

$$
\mathrm{O}\left(n^{k} n^{k}\right)+\mathrm{O}\left(n^{2 k}\right)=\mathrm{O}\left(n^{2 k}\right)
$$

which is a polynomial in the size of input x.

4 More PSPACE-Complete Problems

One way of interpreting the TQBF problem is thinking of it as a game between two players: \exists and \forall. Without loss of generality, we may assume that the quantifier sequence for a TQBF instance

$$
F=\exists x_{1} \forall x_{2} \cdots Q_{m} x_{m} \phi\left(x_{1}, \ldots, x_{m}\right)
$$

begins with \exists and alternates between \exists and \forall. The goal for player \exists is to assign values to the \exists-variables that will ensure that formula ϕ evaluates to 1 . On the other hand, for each assignment made by \exists, player \forall tries to counter by assigning a value to the next variable that will ensure that ϕ evaluates to 0 . Thus, player \exists has a winning strategy iff there is some way of assigning the \exists variables so that, regardless of how \forall counters with its assignments to its own variables, the formula evaluates to 1 .

Definition 4.1. An instance of Formula Game is a TQBF formula F whose quantifier sequence begins with \exists and alternates between \exists and \forall. Moreover, F is a positive instance iff it evaluates to 1 , meaning that player \exists can assign its variables in such a way that, regardless of how player \forall assigns its variables, F will evaluate to 1 .

Theorem 4.2. Formula Game is PSPACE-complete.

Proof. Since Formula Game is essentially the same decision problem as TQBF, the proof of its PSPACEcompleteness is essentially the same as the proof that TQBF is PSPACE-complete.

Example 4.3. Consider the formula

$$
\left.\exists x_{1} \forall x_{2} \exists x_{3}\left[\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)\right]
$$

Viewed as an instance of Formula Game, who wins the game?

4.1 Generalized Geography

The geography game is a 2-player game where players take turns saying the name of a city. The game begins by starting with a city c_{0}. Then Player 1 must say the name of a city c_{1} whose first letter equals the last letter of c_{0} and for which $c_{1} \neq c_{0}$. Player 2 must then respond by saying the name of a city c_{2} whose first letter begins with the last letter of c_{1}, and for which $c_{2} \notin\left\{c_{1}, c_{0}\right\}$. Play continues in this manner with players taking turns saying city names until a player is unable to say the name of a city c_{k} whose first letter equals the last letter of the previously named city c_{k-1} and for which $c_{k} \notin\left\{c_{0}, c_{1}, \ldots, c_{k-1}\right\}$. This player loses the game.

One way to visualize the game is by using a directed graph $G=(V, E)$ where each vertex $u \in V$ is labeled with the name of a city, denoted $c(u)$ and there is an edge from u to v iff the last letter of $c(u)$ equals the first letter of $c(v)$.

We may generalize the geography game by defining an instance of the Generalized Geography (GG) decision problem to be a pair $\left(G, v_{0}\right)$, where $G=(V, E)$ is a directed graph and $v_{0} \in V$ is the designated start vertex. Similar to the geography game, Generalized Geography is a two-player game where players take turns selecting a vertex from G. The game begins at vertex v_{0}. Then Player 1 must select a vertex v_{1} for which $\left(v_{0}, v_{1}\right) \in E$. Player 2 must then respond by selecting a vertex v_{2} for which $\left(v_{1}, v_{2}\right) \in E$ and $v_{2} \notin\left\{v_{0}, v_{1}\right\}$. Play continues in this manner with players selecting vertices until a vertex v_{k-1} is selected so that the next player is unable to find a vertex v_{k} for which $\left(v_{k-1}, v_{k}\right) \in E$ and $v_{k} \notin\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$. This player loses the game. Finally, $\left(G, v_{0}\right)$ is a positive instance of GG iff Player 1 has a winning strategy.

Example 4.4. Below is an example of an instance of Generalized Geography. Is this a positve instance of GG?

Theorem 4.5. Generalized Geography is PSPACE-complete.

Proof. GG is in PSPACE via an algorithm similar to the one used to show that PH is in PSPACE (see Proposition 1.2).

We now describe a reduction from Formula Game to GG. Given an instance $F=\exists x_{1} \forall x_{2} \cdots \exists x_{k} \phi\left(x_{1}, \ldots, x_{k}\right)$ of Formula Game, we assume without loss of generality that

1. $Q_{1}=Q_{3}=\cdots=Q_{k}=\exists$, where k is odd and
2. ϕ is written in conjunctive normal form for which each disjunction has three literals (i.e. ϕ is an instance of 3SAT).

Then mapping reduction $f(F)=(G, b)$ maps F to an instance of GG, an abstract example of which is shown below.

The idea is that the left half of G has a stacked sequence of k diamond subgraphs, one for each variable x_{i}. When i is odd (respectively, even), Player 1 (respectively Player 2) must select either the left-corner or the right-corner vertex of diamond x_{i}. Selecting the left (respectively, right) corner is analgous to assigning variable x_{i} the value 1 (respectively, 0). Also, since k is odd, Player 1 will select vertex c, while Player 2 then has the option of selecting one of the nodes $c_{1}, c_{2}, \ldots, c_{m}$, where c_{i} corresponds with clause i of ϕ.

Now suppose that Player 1 has a winning strategy for Formula Game instance F. Then Player 1 applies this strategy to (G, b) by choosing the appropriate corner of each diamond that it controls/assigns. Then, after Player 1 has selected vertex c, then regardless of which c_{i} is selected by Player 2 , there will exist at least one literal node, say l_{j} of c_{i} that evaluates to 1 , meaning that the player who controls/assigns variable x_{j} selected a corner that corresponds with l_{j} being assigned 1 . Without loss of generality, assume $l_{j}=x_{j}$ and Player 1 controls/assigns x_{j}. Then Player 1 selected the left-corner
node n of diamond j since x_{j} was assigned 1 . Moreover, n is the only node that is reachable from literal node x_{j} in clause c_{i}. Hence, Player 2 loses since n was already selected by Player 1. Therefore, if F is a positive instance of Formula Game, then $f(F)$ is also a positive instance of GG, since Player 1 has a winning strategy.

Now suppose Player 1 does not have a winning strategy for instance F of Formula Game. In this case, regardless of the assignments made by Player 1, Player 2 may assign its variables values in such a way that at least one clause c_{i} will not be satisfied by the assignment α formed by both players. Player 2 then selects c_{i} after Player 1 selects c. Now it's Player 1's turn. Without loss of generality, suppose Player 1 selects $\overline{x_{j}} \in c_{i}$. Then, since x_{j} is assigned 0 by α, the left-corner node of diamond x_{j} has yet to be selected. Thus, Player 2 may select that node. But then that node points only to the bottom node of the diamond, which has already been played, and so Player 1 loses. Therefore, if F is a negative instance of Formula Game, then $f(F)$ is also a negative instance of GG, since Player 2 has a winning strategy. Therefore f is a valid polynomial-time mapping reduction from Formula Game to GG.

Example 4.6. Consider the formula

$$
\left.\exists x_{1} \forall x_{2} \exists x_{3}\left[\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)\right]
$$

Viewed as an instance of Formula Game. Apply the reduction described in the proof of Theorem 4.5.

