# The LOGSPACE Complexity Class 

Last Updated May 12th, 2024

## 1 Log Space

In this lecture we study decision problems that may be decided using $\mathrm{O}(\log n)$ space, where $n$ is the input size. However, to do this we must modify the Turing machine definition so that a machine now has two tapes: a read-only tape for holding the input, and a read-write scratchwork tape for the purpose of computing on behalf of deciding the input. A computation configuration is similar to that of the original TM model, but now the configuration must include a nonnegative integer that indicates the current location of the read-only tape head.

Definition 1.1. Decision problem $A$ is a member of L iff it is decidable by a DTM that uses $\mathrm{O}(\log n)$ scratchwork-tape cells when deciding an instance $x$ of $A$ for which $n=|x|$. Similarly, $A$ is a member of NL iff it is decidable by an NTM that uses $\mathrm{O}(\log n)$ scratchwork-tape cells when deciding an instance $x$ of $A$ for which $n=|x|$.

Example 1.2. Consider the language $A$ consisting of all words of the form $0^{n} 1^{n}$ for some $k \geq 0$. Then $A \in \mathrm{~L}$ since a DTM $M$ can count the number of 0 's that begin a word, and then count the number of 1's that follow. If the two counts are equal and the 1 's are not followed by a 0 , then $M$ accepts. The two counters each require $\mathrm{O}(\log n)$ amount of memory and therefore $A \in \mathrm{~L}$.

Example 1.3. An instance of decision problem Path is a triple $(G, s, t)$, where $G=(V, E)$ is a directed graph, $s, t \in V$, and the problem is to decide if there is a path in $G$ that starts at $s$ and ends at $t$. We may assume that $G$ is represented in the following format:

$$
u_{1}:\left(v_{11}, \ldots, v_{k_{1} 1}\right), \ldots, u_{n}:\left(v_{1 n}, \ldots, v_{k_{n} n}\right),
$$

were, e.g., the vertices $v_{11}, \ldots, v_{k_{1} 1}$ are the neighbors of $u_{1}$ which is denoted as $N\left(u_{1}\right)$.
The following nondeterministic log-space algorithm proves that Path $\in$ NL.

Name: can_reach
Inputs: i) directed graph $G=(V, E)$, ii) $s \in V$, iii) $t \in V$
Output: 1 iff there is a path in $G$ from $s$ to $t$.
If $s=t$, then return 1 .
$u=\operatorname{guess}(N(s))$.
Return can_reach $(G, u, t)$.

The algorithm will certainly return 1 on at least one branch iff $t$ is reachable from $s$.

In terms of memory used, the algorithm only needs to store a copy of $t$ and the current value of $u$. Letting $n=|V|$, we see that both vertices may be encoded using $\mathrm{O}(\log n)$ bits using a uniform-length binary encoding scheme. Therefore, Path $\in$ NL.

## 2 Log Space Reducibility

We would like to have a meaningful notion of reducibility when it comes to problems in either L or NL. Although polynomial-time reducibility seems very appropriate for the generally complex class of problems in both NP and PSPACE, since it turns out that every problem in NL is polynomial solvable, polynomial-time reducibility seems too strong for log-space problems (just as polynomialspace reducibility is too strong for PSPACE). Instead, we introduce the notion of $\log$ space reducibility.

Definition 2.1. A transducer $T$ is a type of Turing machine that consists of a read-only input tape, a read-write scratchwork tape, and a write-only output tape. $T$ is called a log space transducer iff it's scratchwork tape uses $\mathrm{O}(\log n)$ cells, where $n$ is the size of the input to $T$.

Definition 2.2. Function $f: A \rightarrow B$ is said to be log space computable iff there is a log space transducer $T$ for which $f(x)=T(x)$ for all $x \in A$.

Definition 2.3. Decision problem $A$ is $\log$ space mapping reducible to decision problem $B$, written $A \leq_{L} B$, iff there exists a log-space-computable function $f: A \rightarrow B$ for which $x$ is a positive instance of $A$ iff $f(x)$ is a positive instance of $B$.

Theorem 2.4. If $A \leq_{L} B$ and $B \in \mathrm{~L}$, then $A \in \mathrm{~L}$.

Proof Idea. Assume $A \leq_{L} B$ via log space computable function $f: A \rightarrow B$, where $f$ is computed by $T$. Let $M_{B}$ be the log space computing TM that decides $B$. We now describe a log space computing TM $Q$ that decides $A$.

1. On input $x, Q$ 's ultimate goal is to simulate $M_{B}$ on input $f(x)$ and accept $x$ iff $M_{B}$ accepts $f(x)$.
2. Problem: $f(x)$ could be very large, as in polynomial with respect to $|x|$. Assume $|f(x)| \leq c n^{k}$ for constants $c, k>0$. This assumption is validated Lemma 1.5 of the Space Complexity lecture.
3. Solution: repeat the following until the computation of $M_{B}$ on input $f(x)$ has been completed.
(a) For each step of the simulation of $M_{B}$ on input $f(x)$, keep track of the location $i$ of $M_{B}$ 's read-only tape head.
(b) Before applying $M_{B}$ 's $\delta$-transition function (which requires knowing the current input symbol at location $i$ ), simulate $T$ up to when $T$ writes the $i$ th symbol $w_{i}$ on to the output tape.
(c) Use $w_{i}$ for the purpose of applying $M_{B}{ }^{\prime}$ s $\delta$-transition function to obtain the next configuration.
4. Accept $x$ iff $B$ accepts $f(x)$.

## Program $Q$ uses $\mathbf{O}(\log n)$ space.

1. Storing programs $M_{B}$ and $T$ requires $\mathrm{O}(1)$ space.
2. Storing the current configuration of $M_{B}$ requires $\mathrm{O}\left(\log \left(c n^{k}\right)\right)=\mathrm{O}(\log n)$ space since the size of any configuration in the computation $M_{B}(f(x))$ is logarithmic with respect to the size of $f(x)$ which is bounded by $c n^{k}$.
3. Storing a configuration of $T$ requires at most $\mathrm{O}(\log n)$ space since $T$ itself uses at most $\mathrm{O}(\log n)$ space.
4. Similar to 2 , the variable that holds the current location of $M_{B}$ 's input head requires $\mathrm{O}\left(\log \left(c n^{k}\right)\right)=$ $\mathrm{O}(\log n)$ space.

## 3 NL-Completeness

Definition 3.1. Decision problem $B$ is said to be NL-complete iff

1. $B \in \mathrm{NL}$
2. for every other decision problem $A \in \mathrm{NL}, A \leq_{L} B$.

A corollary to Theorem 2.4 (exercise) is that if any NL-complete language is in L , then $\mathrm{L}=\mathrm{NL}$.

Theorem 3.2. Path is NL-complete.

Proof Idea. Let $A \in$ NL be given and suppose NTM $N$ decides $A$ using $\log$ space scratchwork.

1. Assume that $N$ has a unique accepting configuration $c_{a}$, regardless of input.
2. There is a constant $d>0$ such that, for an input $x$ of size $n$, the computation $M(x)$ uses configurations that may be written using at most $d \log n$ tape cells.
3. Given instance $x$ of $A$, with $|x|=n$, define the configuration graph $G_{x}=(V, E)$, where
(a) $c \in V$ iff $c$ is a valid configuration for $M$ (note: it's possible that $c$ may never get used in the computation $M(x)$ ), and
(b) $\left(c_{1}, c_{2}\right) \in E$ iff $c_{2}$ is a possible next configuration given that $c_{1}$ is the current configuration of some computation of $M$, assuming $x$ as input.
4. There is a $\log$ space transducer $T$ for which, given input $x \in A, T(x)$ outputs $G_{x}$ in a format similar to the one described in Example 1.3. True, since
(a) $T$ may go through all possible legal configurations of $N$ that have size at most $d \log n$.
(b) For each legal configuration $c$ encountered, $T$ then uses $N$ 's $\delta$-transition function to list all the configurations $c^{\prime}$ that are reachable from vertex $c$ in one step, i.e. $\left(c, c^{\prime}\right) \in E$.
5. After writing $G_{x}, T$ then writes $c_{x}$ and $c_{a}$, where $c_{x}$ is the initial configuration of the computation $N(x)$.
6. Therefore, $x$ is a positive instance of $A$ iff $\left(G_{x}, c_{x}, c_{a}\right)$ is a positive instance of Path, since $N$ accepts $x$ iff there is a path of configurations from $c_{x}$ to $c_{a}$.

Corollary 3.3. $\mathrm{NL} \subseteq \mathrm{P}$.

Proof. Let $A \in$ NL be given and consider the reduction from $A$ to PATH provided in the previous theorem. This is not only a log space reduction, but it is also a polynomial time reduction (exercise!). But, since Path $\in \mathrm{P}$, it follows that $A \in \mathrm{P}$. In other words, any decision problem that is polynomialtime reducible to a problem in P , must also be in P (exercise!).

Corollary 3.4. TQBF $\notin$ NL.

Proof. By the Space Hierarchy Theorem, and the fact that every NL problem can be decided using a polynomial amount of space, it follows that NL is properly contained in PSPACE. But TQBF is PSPACE-complete and it can be shown that the mapping reduction used to prove this is in fact a log space reduction. Thereore, if TQBF were in NL, then all of PSPACE would be contained in NL, which contradicts the Space Hierarchy Theorem.

Definition 3.5. The UPath decision problem is similar to Path, but now the input graph is assumed undirected.

## Observations about Path.

- UPath $\in$ NL (same algorithm that was used for Path)
- It is not known if UPath is NL-complete
- Although Path can be trivially reduced to UPath in polynomial time (why?), there is no known way to reduce Path to UPath in $\log$ space.
- It is not known if either UPath or Path is in L
- However, there is a polynomial-time randomized log-space algorithm that decides if UPath with a probability of error that can be made arbitrarily small!


## A polynomial-time randomized log-space algorithm that decides UPath

Name: can_reach
Inputs:

1. undirected graph $G=(V, E)$
2. $s \in V$
3. $t \in V$
4. polynomial $p(e, n)$, where $e=|E|$ and $n=|V|$
5. nonnegative integer steps

Output: 1 iff a path in $G$ from $s$ to $t$ is discovered.
If $s=t$, then return 1 .
If steps $=p(e, n)$, then return 0 .
$u=\operatorname{random}(N(s))$.
Return can_reach $(G, u, p(e, n)$, steps +1$)$.

Theorem 3.6. There is a quadratic polynomial $p(e, n)$ such that, if, for sufficiently large $n$, if the above algorithm $\mathcal{A}$ is run for $p(e, n)$ steps and $t$ is reachable from $s$, then with probability at least $1 / 2$, then $\mathcal{A}$ returns 1 .

