
Introduction to Computational Complexity Theory

Last Updated April 10th, 2024

1 Introduction

Definition 1.1. TheComputational complexity of a computational problem refers to the minimum
amount of resources (e.g. execution steps or memory) needed to solve an instance of the problem in
relation to its size.

In other words, given problem A, we seek functions s(n) and t(n) such that, if A is an algorithm that
solves A, then A will require Ω(s(n)) amount of memory and Ω(t(n)) number of steps to solve an
instance of A of size n, where n is the (for simplicity, we’re assuming only one) size parameter for A.

In this chapter we focus almost entirely on decision problems. One reason for this is that the vast
majority of problems that are of interest to both computing practitioners and complexity theorists
are either decision or optimization problems. And an optimization problem can be readily translated
into a decision problem by introducing a nonnegative integer k that represents a threshold for which
it must be decided if the property that is being optimized for the problem instance can achieve the
given threshold. For example, an instance of optimization problem Max Clique is a simple graph G,
and the problem is to find the the largest clique in G. On the other hand, an instance of decision
problem Clique is a pair (G, k) and the problem is to decide if G has a clique of size k. Notice that
an algorithm for solving Max Clique immediately yields an algorithm for solving Clique (why?).
Furthermore, if there is an algorithm for solving Clique in O(t(n)) steps, then it can be shown that
there is also one for solving Max Clique in O(log(n)t(n)) steps.

1

2 Problem Size and Size Parameters

Definition 2.1. Given a decision problem A and an instance x of A, |x| denotes the size of x and
equals the number of bits needed to binary-encode x. The notation |x| is often useful when speaking
abstractly about a generic decision problem, and an instance x of that problem.

Definition 2.2. Given a decision problem A, a size parameter for A is a parameter that may be
used to (approximately) represent the size of an instance of A. Given an algorithm A that decides A,
its size parameters allow one to describe the number of steps (and/or amount of memory) required
by A as a function of the size parameters.

2

Example 2.3. The following are some examples of problems, their size parameters, and examples
of how those size parameters are used.

Clique 1. Instance: (G = (V,E), k)

2. Size parameters: m = |E|, n = |V |
3. Example: verifying that some k vertices form a clique can be done in O(n2) steps.

Subset Sum 1. Instance: (S, t)

2. Size parameters: n = |S|, b is the number of bits needed to write t (we assume that t ≥ s,
for all s ∈ S.

3. Example: verifying that a subset of S sums to t can be done in O(nb) steps.

3SAT 1. Instance: C
2. Size parameters: m = |C|, n = number of variables of C.
3. Example: verifying that an assignment α satisfies C can be done in O(m) steps.

Prime 1. Instance: n

2. Size parameters: b is the number of bits needed to write n in binary. Note that b =
⌊log n⌋+ 1.

3. Example: there is an algorithm that can decide Prime using O(b6) steps.

3

3 The Complexity Class P

Definition 3.1. A complexity class represents a set of decision problems, each of which can be
decided by an algorithm that has one or more constraints placed on the resources (i.e. number
of computational steps and/or amount of computer memory) that it may use when deciding the
problem.

Definition 3.2. Decision problem A is a member of complexity class P if there is an algorithm that
decides A in a polynomial number of steps with respect to the size parameters of A.

Complexity class P is considered robust in the sense that its members tend to remain the same
from one model of computation to the next (granted, some models of computation are inherently
inefficient, and are not appropriate for use in complexity theory).

4

Example 3.3. Here is a description of some important decision problems that are members of P,
some of which required an algorithmic breakthrough before acquiring membership.

Distance between Graph Vertices Given weighted graph G = (V,E,w), vertices a, b ∈ V , and
integer k ≥ 0, is it true that the distance from a to b does not exceed k? Dijkstra’s algorithm
solves this problem in O(m log n) steps.

Primality Test Given natural number n ≥ 2 is n prime? (see “PRIMES is in P”, Annals of
Mathematics, Pages 781-793 from Volume 160 (2004), Issue 2 by Manindra Agrawal, Neeraj
Kayal, Nitin Saxena). The algorithm requires O(log6 n) steps.

Linear Optimization Given i) function f(x) = cx, for some 1 × n-dimensional constant matrix c
and n× 1 real-valued matrix x, ii) constant k ∈ R, iii) m×n constant matrix A, and iv) m× 1
constant matrix b, is it true that there is an x for which

f(x) = cx ≤ k,

subject to
Ax ≥ b?

Karmarkar’s algorithm solves this problem in O(n3.5L2 · logL · log(logL)) steps, where n is
the number of problem variables, and L is the number of bits needed to encode an problem
instance.

Maximum Flow Given directed network G = (V,E, c, s, t) and integer k ≥ 0, is there a flow from
s to t of size at least k? The Ford Fulkerson algorithm solves this problem in O(n3) steps.

Perfect Matching Given bipartite graph G = (U, V,E), where |U | = |V | = n, does G have a
perfect matching, i.e. a set of edgesM = {e1, . . . , en} ⊆ E such that any two edges ei, ej ∈ M
neither share a vertex in U , nor share a vertex in V ? The Ford Fulkerson algorithm solves this
problem in O(n2 +mn) steps.

2SAT Given a set of Boolean formulas C, where each formula (called a clause) has the form a ∨ b,
where a and b are literals, is there a truth assignment for the variables so that each clause has
at least one literal that is assigned true? This problem can be solved in O(m+ n) steps.

Bitonic Traveling Salesperson given n cities c1, . . . , cn, where ci has grid coordinates (xi, yi), and
a cost matrix C, where entry Cij denotes the cost of traveling from city i to city j, determine
a left-to-right followed by right-to-left Hamilton-cycle tour of all the cities that minimizes the
total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to
right visiting a subset of the cities (including the rightmost city), and then concludes from right
to left visiting the remaining cities. The problem can be solved in O(n log2 n) steps.

5

Figure 1: Solving an NP problem can be like finding a needle in a haystack.

4 The Complexity Class NP

Definition 4.1. Decision problem A is a member of complexity class NP if there is

1. a set Cert, called the certificate set,

2. a decision algorithm V, called the verifier, which has the following properties:

(a) the inputs to V are i) an instance x of A and ii) a certificate c ∈ Cert

(b) the output is 1 iff c is a valid certificate for x, meaning that c proves that x is a positive
instance of A

(c) V requires a polynomial number of steps with respect to the size parameters of A.

Although, for any given instance x of A and any certificate c ∈ Cert, the verifier only requires a
polynomial number of steps, what makes some NP problems very difficult to solve is that there are
usually an exponential number of certificates, and finding a valid one is like finding a “needle-in-a-
haystack” because there is no apparent way to avoid having to examine an exponential (in the size
parameters of A) number of certificates.

6

Example 4.2. We show that Clique ∈ NP. Let (G = (V,E), k) be a problem instance for Clique.

Step 1: define a certificate. Certificate C is a subset of V where |C| = k.

Step 2: provide a semi-formal verifier algorithm.

For each u ∈ C,

For each v ∈ C with u ̸= v,

If (u, v) ̸∈ E, then return 0.

Return 1.

Step 3: size parameters for Clique. m = |E| and n = |V |.

Step 4: provide the verifier’s running time with an explanation.

The nested for-loops require at most k2 = O(n2) query to determine if a pair of vertices (u, v). Each
query can be answered using a hash table that stores the graph edges. Building such a table takes
Θ(m) steps. Thus, algorithm’s total number of steps is O(m+n2) = O(n2) steps, which is quadratic
in the size of (G, k).

7

Example 4.3. By repeating the steps of Example 4.2, prove that Subset Sum ∈ NP. Let (S, t) be
an instance of Subset Sum.

Step 1: define a certificate.

Step 2: provide a semi-formal verifier algorithm.

Step 3: provide size parameters for Subset Sum.

Step 4: provide the verifier’s running time with an explanation.

8

Example 4.4. The 3-Dimensional Matching (3DM) decision problem takes as input three sets A,
B, and C, each having size n, along with a set S of triples of the form (a, b, c) where a ∈ A, b ∈ B,
and c ∈ C. We assume that |S| = m ≥ n. The problem is to decide if there exists a subset T ⊆ S of
n triples for which each member from A ∪B ∪ C belongs to exactly one of the triples.

Show that (A,B,C, S) is a positive instance of 3DM, where A = {a, b, c}, B = {1, 2, 3}, C = {x, y, z},
and

S = {(a, 1, x), (a, 2, z), (a, 3, z), (b, 1, x), (b, 2, x), (b, 3, z), (c, 1, x), (c, 2, z), (c, 3, y)}.

Solution.

9

Example 4.5. By repeating the steps of Example 4.2, prove that 3DM ∈ NP. Let (A,B,C, S) be an
instance of 3DM.

Step 1: define a certificate.

Step 2: provide a semi-formal verifier algorithm.

Step 3: provide size parameters for 3DM.

Step 4: provide the verifier’s running time with an explanation.

10

∧

x1 ∨

x2 x3

Figure 2: Parse tree for Boolean formula x1 ∧ (x2 ∨ x3)

4.1 The Satisfiability (SAT) problem is in NP

A Boolean formula F (x1, . . . , xn) over variable set V = {x1, . . . , xn} may be represented with a
parse tree for which i) each internal node is labeled either ∧ or ∨, and ii) each leaf node is labeled
either xi or xi, for some i = 1, . . . , n. Leaf nodes are also called literal nodes, since a formula literal
is any variable or its negation. For example, the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)

may be represented by the parse tree shown in Figure 2.

Definition 4.6. assignment over variable set V is a function α : V → {0, 1} that assigns to each
variable x ∈ V a member of {0, 1}. We may represent α using function notation, or as a labeled
tuple. Indeed, for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation and
write α = (x1 = 1, x2 = 1, x3 = 0).

Given Boolean formula F and assignment α over V we may evaluate F using the function eval(F, α)
that returns a value in {0, 1}. We provide a recursive definition of eval(F, α) over the set of all
Boolean formulas defined over V .

Base Case If F consists of a leaf node labeled with literal l (i.e., x or x for some variable x), then

eval(F, α) = α(l).

Recursive Case (And) If the root of F is labeled ∧, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∧ · · · ∧ eval(Cm, α).

Recursive Case (Or) If the root of F is labeled ∨, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∨ · · · ∨ eval(Cm, α).

It is worth noting that eval(F, α) may be computed in O(|F |) steps, where |F | denotes the number
of nodes in formula F .

11

Example 4.7. Use the recursive definition of eval to evaluate the formula

F (x1, x2, x3) = ((x1 ∨ x3) ∧ (x1 ∨ x2)) ∨ ((x2 ∨ x3) ∧ (x1 ∨ x3))

over the assignment α = (1, 0, 1). Demonstrate how the number of evaluation steps is proportional
to the number of nodes in the tree representation of F .

12

Example 4.8. The satisfiability problem (SAT) is the problem of deciding if a Boolean formula
F (x1, . . . , xn) evaluates to 1 on some assignment α over the Boolean variables x1, . . . , xn. We show
that SAT ∈ NP. Let F (x1, . . . , xn) be an instance of SAT.

Step 1: define a certificate. Solution. α is an assignment over the variables x1, . . . , xn.

Step 2: provide a semi-formal verifier algorithm. Solution. Evaluate F (x1, . . . , xn) recursively.

//Base Case:

If F = l is a single literal, then return α(l).

//Recursive Case 1

If F = F1 ∧ F2 ∧ · · · ∧ Fk, then return

eval(F1, α) ∧ eval(F2, α) ∧ · · · ∧ eval(Fk, α).

//Recursive Case 2

If F = F1 ∨ F2 ∨ · · · ∨ Fk, then return

eval(F1, α) ∨ eval(F2, α) ∨ · · · ∨ eval(Fk, α).

Step 3: provide size parameters for SAT. Solution. The size parameter is |F |, the number of
nodes in F ’s parse tree.

Step 4: provide the verifier’s running time with an explanation. Solution. The verifier
has running time O(|F |), since evaluating F can be done by evaluating each node of F ’s parse tree
exactly once.

Therefore, SAT ∈ NP.

13

Theorem 4.9. P ⊆ NP.

Proof. Let L ∈ P be a decision problem that can be decided in polynomial time. Then there is a
polynomial-time computable predicate function D(x) that decides L. We now show that L ∈ NP by
repeating the steps of Example 4.2.

Step 1: define a certificate. Solution. Since L ∈ P, a verifier for L does not require a certificate,
since it can run predicate function D(x) in polynomial time to determine if L-instance x is positive.
However we must follow the definition of being in NP. So we make a “dummy” certificate set C = {1}
consisting of a single member which the verifier can ignore.

Step 2: provide a semi-formal verifier algorithm. Solution.

// A one line program:

Return D(x).

Step 3: provide size parameters for L. Solution. Since L is a generic problem, we let |x| denote
the size of L-instance x.

Step 4: provide the verifier’s running time and defend your answer. Solution. Since L ∈ P,
predicate function D(x) may be computed in O(p(|x|)) steps, for some polynomial p.

Therefore, L ∈ NP.

14

Do there exist decision problems that are in NP but not in P? This would imply that some problems
have solutions that can be verified in polynomial time, but not solved in polynomial time. Moreover,
NP problems such as Clique, Subset Sum, and 3DM are candidates since, at this writing, polynomial-
time algorithms for these problems have yet to be established. But at the same time a proof that
such algorithms do not exist has yet to be found.

To better understand the difficulty faced with resolving the P =? NP question, consider the SAT

problem. Several algorithms have been designed for solving instances of SAT and, although none of
them appear to run in polynomial-time, for some there is no proof that it does not run in polynomial
time. Moreover, it may be possible to design an “algorithm cocktail” that combines the best SAT

algorithms in a way that solves each of the “hard” instances in polynomial time where the polynomial
may have a very high degree. In other words, it’s possible that two things could be true at the same
time:

1. P = NP

2. but some instances of SAT require an exorbitant (albeit polynomial) amount of computational
resources to solve, both now and in the forseeable future.

The P=?NP problem is considered one of the most challenging and important in all of computer science
and mathematics. The Clay Mathematics Institute is awarding a prize of $1 million dollars to anyone
who can resolve this problem.

15

5 Polynomial-time Mapping Reducibility

Definition 5.1. Decision problem A is polynomial-time mapping reducible to decision problem
B, written A ≤p

m B, iff there exists a computable function f : A → B for which x is a positive
instance of A iff f(x) is a positive instancce of B and f(x) may computed in a number of steps that
is bounded by a polynomial in the size parameters of A.

16

a

b

c

d

e

f

g

h

i

Figure 3: I = {a, b, d, f, h} is an independent set for the above graph

a

b

c

d

e

f

g

h

i

Figure 4: The complement graph G for the graph G shown in Figure 3

Example 5.2. Recall the Clique decision problem defined in Example 2.3. A related problem is
the Independent Set (IS) optimization problem for which a problem instance is a simple graph
G = (V,E) and a nonnegative integer k ≥ 0, and the problem is to decide if G has an independent
set, i.e. a subset I ⊆ V of k vertices such that, for every u ∈ I and v ∈ I, (u, v) ̸∈ E. In other
words, every pair of vertices u, v ∈ I must be non-adjacent. Figure 3 shows the graph of a positive
instance (G, k = 5) of IS, since G has the independent set I = {a, b, d, f, h}.

We now provide a map reduction from IS to Clique. Given a simple graph G = (V,E), our reduction
makes use of the complement of G, denoted G, which is defined as G = (V,E), where, for any two
vertices u, v ∈ V , (u, v) ∈ E iff (u, v) ̸∈ E. In other words, G and its complement G have the same
vertex set, but the edges of G are exactly those edges that are not edges of G, and vice versa. For
example, the Graph is Figure 4 shows the complement of the graph G in Figure 3.

17

Notice that the independent set I = {a, b, d, f, h} for G now represents a 5-clique in G. In fact, this
is true for any independent set I for G: I is an independent set for G iff I is a clique for G. Thus,
we may provide a map reduction f : IS → Clique that is defined by f(G, k) = (G, k). Indeed, G
has an independent set of size k iff G has a k-clique.

Finally, we have the following two facts.

1. the map reduction is a polynomial-time reduction, since constructing G from G requires at
most O(n2) steps (why?), and

2. we could just as easily have defined the same reduction from Clique to IS.

18

5.1 Embeddings

Definition 5.3. An embedding reduction is a kind of mapping reduction for which a problem A
is map reduced to problem B, where A is a special case of B.

As an example, consider a vehicle that has an air-conditioning system that includes the ability to
cool and heat different parts of the vehicle, as well as control the flow of air entering and leaving the
vehicle. Recall our friend Sam from the Turing Reducibility lecture. Sam and his friends drove to the
Mohave desert where they encountered extreme heat, lots of wind, and some very dusty roads. While
driving, they reduced the problem of staying cool and breathing clean air to setting the vehicle’s air-
conditioner to “cool” and allowing no outside air to enter the vehicle. In other words, the general
air-conditioning system served the special purpose of cooling and maintaining air cleanliness.

19

Definition 5.4. The Subset Sum (SS) decision problem is a pair (S, t), where S is a set of nonnegative
integers, and t is a nonnegative integer. The problem is to decide if there is a subset A ⊆ S whose
members sum to t, i.e., a subset A for which ∑

a∈A

a = t.

Example 5.5. Subset Sum instance (S = {3, 7, 13, 19, 22, 26, 35, 38, 41}, t = 102) is a positive
instance of SS since A = {3, 7, 13, 38, 41} ⊆ S and

3 + 7 + 13 + 38 + 41 = 102.

20

Definition 5.6. An instance of decision problem Set Partition (SP) consists of a set S of positive
integers, and the problem is to decide if there are subsets A,B ⊆ S for which

1. A ∩B = ∅,

2. A ∪B = S, and

3. ∑
a∈A

a =
∑
b∈B

b.

In other words, the members of A must sum to the same value as the members of B.

Example 5.7. Verify that Set Partition instance

S = {3, 14, 19, 26, 35, 37, 43, 49, 52}

is a positive instance of SP via A = {3, 35, 49, 52} and B = 14, 19, 26, 37, 43.

21

A few moments of thought should convince you that SP is a special case of SS. Indeed given instance
S of SP, if we let M denote the sum of all members of S, then we essentially are seeking a subset A
whose members sum to M/2 since, if such A can be found, then by setting B = S − A, we have all
three conditions met (check this!). Therefore, we may reduce SP to SS via the map

f(S) = (S, t = M/2), (1)

where M is defined as above.

Just as Sam and his friends don’t care about the heating features of the air-conditioning, when solving
an instance of Set Partition via Subset Sum, we don’t care that Subset Sum can solve a wider
variety of problems involving t values that may not have any relationship with S.

22

Example 5.8. Given the instance S = {4, 8, 17, 25, 34, 46, 53, 59} of Set Partition, provide the
instance of SS to which it reduces via the mapping defined in equation 1.

Solution.

23

Definition 5.9. An instance of the LPath decision problem is a pair (G, k), where G = (V,E) is a
simple graph, and k ≥ 0 is a nonnegative integer. The problem is to decide if G has a simple path
of length k, i.e. a path that traverses k edges and visits exactly k + 1 different vertices.

Example 5.10. The following graph, along with k = 4, shows a positive instance of LPath.

a b c d

e f g h

24

Definition 5.11. An instance of the Hamilton Path (HP) decision problem consists of a simple
graph G = (V,E) and the problem is to decide if G has a Hamilton path, namely a path that visits
every vertex in G exactly once.

Example 5.12. The following graph represents a positive instance of HP, with the Hamilton Path
shown in red.

a b c d

e f g h

25

Once again, it is hopefully evident that HP is a special case of LPath. To see this, note that a simple
graph has a Hamilton path iff it has a simple path of length n − 1 = |V | − 1. Therefore, we may
reduce HP to LPath via the map

f(G) = (G, |V | − 1).

26

5.2 Contractions

As the examples in the previous section suggest, devising an embedding reduction from problem A
only requires knowledge of a problem B that is more general than A and includes A as a special
case. On the other hand, a contraction reduction is a mapping reduction for which problem B is
the special case of problem A. Defining a contraction usually involves some insight and imagination.
Moreover, a contraction reduction demonstrates actual computing progress in the sense that a body
A of problem instances gets effectively reduced to a smaller set B which may improve the chances of
efficiently solving A through the lens of B.

Example 5.13. Contractions are quite common in everyday computing. As an example, consider
a legacy compiler C for some programming language L. Over the years L gets extended with the
addition of new programming constructs that improve the ease of programming in L. We’ll call
this extended version Turbo-L. Rather than write a new compiler for Turbo-L, we instead provide
a contraction that is capable of translating any Turbo-L program to an L program, followed by
compiling the L-code with the legacy compiler.

27

Let’s return to the Subset Sum (SS) and Set Partition (SP) problems defined in Section 5.1.
There we showed a natural embedding from SP to SS. Now we show a contraction from SS to SP. To
see how the contraction works, consider the set

S = {7, 12, 15, 23, 37, 42, 48}.
The sum of its members is M = 184. Therefore, if (S, t) is an instance of SS with t = 184/2 = 92,
then, by dropping t, this instance naturally maps to SP:

(S, t) → S,

and (S, t) is positive for SS iff S is positive for SP.

What if t is less than half of M? Then we may not simply drop t, but will also have to modify
S. But how? As an example, suppose that t = 64 < 92. Then (S, t) is a positive instance of SS
via A = {12, 15, 37}. Notice also that the members of the complement B = S − A sums to 120.
Therefore, by adding to S the extra number J = 56, we see that the members of

A ∪ {56} = {12, 15, 37, 56},
also sum to 120 and thus S ′ = S ∪ {56} is a positive instance of SP.

Let’s generalize the example from the last paragraph. Assume that t < M/2. Then we must add the
number J to S for which

t+ J = M − t ⇒ J = M − 2t.

Now suppose (S, t) is positive for SS via A ⊆ S. Let A′ = A+ {M − 2t} and B′ = S − A. Then we
have

1. A′ ∩B′ = ∅,

2. A′ ∪B′ = S ′ = S + {M − 2t}, and

3. the members of A′ sum to t+ (M − 2t) = M − t while the members of B′ also sum to M − t.

Therefore, S ′ = S ∪ {M − 2t} is a positive instance of SP.

We now show that the converse is also true: if S ′ = S ∪ {M − 2t} is positive for SP, then there are
subsets A′ and B′ of S ′ for which

1. A′ ∩B′ = ∅,

2. A′ ∪B′ = S ′,

3. (M − 2t) ∈ A′, and

4. the members of A = A′ − {M − 2t} sum to

1/2(M + (M − 2t))− (M − 2t) = (M − t)− (M − 2t) = t.

And since the members of A = A′ − {M − 2t} are all members of S, we see that (S, t) is positive for
SS.

28

Example 5.14. Derive the formula for J in case t > M/2.

29

Example 5.15. Use the above reduction to map the following instances of Subset Sum to Set

Partition.

1. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 51)

2. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 132)

3. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 200)

30

5.3 Implications of mapping reducibility on complexity

Theorem 5.16. IfA ≤p
m B, whereA andB are two decision problems. Then the following statements

hold.

1. If B is decidable in O(p(m)) steps, for some polynomial p, where m is the size parameter for B,
then A is decidable in O(r(n)) steps, for some polynomial r(n), where n is the size parameter
for A.

2. If A cannot be solved in O(r(n)) steps, for any polynomial r(n), then B cannot be solved in
O(p(m)) steps for any polynomial p(m).

Proof. Notice that the second statement is the contrapositive of the first, and so it suffices to prove
the first. To this end, assume B is decidable in O(p(m)) steps via some algorithm B. Since A ≤p

m B,
there is a map f : A → B that is computable in O(q(n)) steps for some polynomial q(n), where n is
the size parameter for A. Moreover, the decision for instance a of A equals the decision for instance
f(a) of B. Therefore, an algorithm for solving A first computes instance f(a) via the algorithm
that computes f , and then applies algorithm B to instance f(a). Now, since f(a) is computable in
O(q(n)) steps, we may assume that the size of f(a) is m = O(q(n)) bits, i.e. each algorithm step can
construct at most O(1) bits of the output. Thus, B runs on input f(a) whose size is m = O(q(n)) bits
which means the algorithm’s running time is O(p(q(n))). Thus, the total running time for solving
instance a is

O(q(n)) + p(q(n))) = O(p(q(n))),

and so we may set r(n) = q(p(n)).

31

Example 5.17. Suppose f map reduces A to B and is computable in O(n3) steps. Furthermore,
suppose algorithm B solves an instance of B in O(m4) steps. Determine the running time of the
following algorithm that solves A.

Algorithm for Solving A

Input: instance a of A.

Output: solution to a.

Compute b = f(a) which is an instance of B.

Return B(b).

32

6 NP-Complete Decision Problems

Now that we have an idea about the type of decision problems that belong in NP, we would like
a method for demonstrating that a decision problem is in some sense one of the hardest amongst
all problems in NP, and thus is the best candidate for not belonging to class P. Furthermore, if we
consider what might constitute a difficult problem amongst a class of problems, the most difficult
would seem to be one to which every other problem in the class can be reduced.

Definition 6.1. A decision problem B is said to be NP-complete iff

1. B ∈ NP

2. for every other decision problem A ∈ NP, A ≤p
m B.

33

Theorem 6.2. (Cook’s Theorem) SAT is NP-complete.

Outline of a Proof of Cook’s Theorem

1. Let L ∈ NP be an arbitrary decision problem and x an instance of L.

2. Let v(x, c) be the verifier program associated with L.

3. Let q(|x|) denote the running time for v(x, c), where q is a polynomial.

4. Let variables y1, . . . , yl(|x|) be a collection of Boolean variables that is capable of encoding any
certificate c for verifying x, where l is a polynomial (one of the requirements of a certificate is
that its size must be polynomial with respect to |x|).

5. It can be shown that any program that runs in a polynomial q(|x|) number of steps and depends
on a polynomial l(|x|) number of Boolean variables, can be procedurally converted in polynomial
time to a Boolean formula

Fv,x(y1, . . . , yl(|x|)),

where

(a) Fv,x is satisfiable iff v(x, c) evaluates to 1 for some certificate c, iff x is a positive instance
of L, and

(b) |Fv,x| is bounded in size by some polynomial in terms of |x|, the size of x.

Therefore,
L ≤p

m SAT.

34

7 More NP-Complete Problems

We now build on Cook’s theorem to show that a host of other problems are NP-complete (to this
date there are several thousand known NP-complete problems from several areas of computer science
and mathematics). We do this with the help of the following lemma. Its proof relies on the fact that
mapping reducibilities are transitive: if A ≤p

m B and B ≤p
m C, then A ≤p

m C.

Lemma 7.1. Suppose decision problems A and B are in NP, and A is both NP-complete and
polynomial-time reducible to B. Then B is NP-complete.

35

7.1 The 3SAT Logic Problem

In this Section we introduce the 3SAT logic problem which will which represents one of the more
important problems in all of Computer Science.

7.2 Boolean Variable Assignments

Before introducing the 3SAT decision problem, we need to understand the concept of a Boolean
variable assignment.

Boolean Variable A variable is said to be Boolean iff its domain equal {0, 1}. We use lowercase
letters, such as x, y, z, x1, x2, . . ., etc., to denote a Boolean variable.

Assignment An assignment over a Boolean-variable set V is a function α : V → {0, 1} that
assigns to each variable x ∈ V a value in {0, 1}. We may represent α using function notation,
or as a labeled tuple.

Example: for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation
and write

α = (x1 = 1, x2 = 1, x3 = 0),

or
α = (1, 1, 0),

if the associated variables are understood.

Variable Negation If x is a variable, then x is called its negation.

Example: Suppose assignment α satisfies α(x1) = 0. Then (extending α to include negation
inputs) α(x1) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: x1, x3, x3, are x5 all examples of literals.

Consistent A set R of literals is called consistent iff no variable and its negation are both in R.
Otherwise, R is said to be inconsistent.

Example: {x1, x2, x4, x7, x9} is a consistent set, but {x1, x2, x4, x7, x7} is an inconsistent set.

36

Induced Assignment If R = {l1, . . . , ln} is a consistent set of literals, then αR is called the
(partial) assignment induced by R and is defined by α(li) = 1 for all li ∈ R.

Example: the assignment induced by R = {x1, x2, x4, x7, x9} is

α = (x1 = 1, x2 = 0, x4 = 1, x7 = 0, x9 = 0).

37

Definition 7.2. A ternary disjunctive clause is a Boolean formula of the form

l1 ∨ l2 ∨ l3,

where l1, l2, and, l3 are literals. The clause evaluates to 1 in case at least one of l1, l2, or l3 is assigned
1. In this case we say the clause is satisfied. Otherwise it is unsatisfied.

Definition 7.3. An instance of the 3SAT decision problem consists of a set C of ternary disjunctive
clauses. The problem is to decide if there is an assignment α over the variables in C, such that every
clause (l1 ∨ l2 ∨ l3) in C evaluates to 1 under α. If such an assignment α exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 3SAT decision problem is the problem of deciding whether a set C of ternary clauses is
sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each
clause (l1 ∨ l2 ∨ l3) as (l1, l2, l3).

Example 7.4. Provide a satisfying assignment for

C = {(x1, x2, x3), (x2, x3, x4), (x1, x2, x4), (x1, x3, x4), (x1, x2, x4), (x2, x3, x4), (x1, x3, x4),

(x2, x3, x4), (x2, x3, x4)}.

38

Theorem 7.5. SAT ≤p
m 3SAT.

Proof. We prove the theorem by making use of what is referred to as the Tseytin transformation,
named after the Russian mathematician Gregory Tseytin. It is a method for transforming an instance
F of SAT to an instance C of 3SAT that is satisfiability-equivalent to F , meaning that F is satisfiable
iff C is satisfiable. Let F (x1, . . . , xn) be an instance of SAT. Without loss of generality, we may
assume that F has a binary parse tree T . Let n1, . . . , nm denote the internal nodes of T , where we
assume n1 correpsonds with the root. We assign a literal to each tree node. If n is a leaf, then the
literal assigned to n is the literal l for which n is labeled. If n = ni is an internal node, then we
introduce a new variable yi and associate it with ni.

Thus, the reduction f from SAT to 3SAT is such that f(F) = C, and the variables used in the clauses
of C are precisely x1, . . . , xn, y1, . . . , ym. Moreover the clauses of C are obtained from each internal
node. For example, let ni be an internal node, and suppose it’s two children have associated literals
l1 and l2. If ni is a ∧-operation, then the goal is to replace the formula

yi ↔ (l1 ∧ l2)

with a logically equivalent conjunction of disjunctive clauses. The same is true in the case that ni is
a ∨-operation: we must replace

yi ↔ (l1 ∨ l2)

with a logically equivalent conjunction of disjunctive clauses.

Finally, we add the clause y1 to assert that formula F evaluates to 1.

To see that f(F) = C is a polynomial-time reduction, we first note that C has a number of clauses
and variables that is linear in |F |. Is is because each formula of the form yi ↔ (l1∧ l2) or yi ↔ (l1∨ l2)
yields up to six disjunctive formulas. Thus f(F) can be constructed in a number of steps that is
linear with respect to |F |.

Secondly, if F is satisfiable, then there is an assignment α over x1, . . . , xn for which F (α) = 1.
Moreover, based on the recursive tree evaluation of F (α), this computation of F (α) also yields a
correpsonding assignment β over the internal y variables in which y1 is assigned 1. Hence, α ∪ β is
a satisfying assignment for C. Conversely, if α ∪ β is a satisfying assignment for C, then, since the
formulas of C represent a non-recursive representation for evaluating F (x1, . . . , xn), it follows that α
must satisfy F , since it induces a computation of each node of F in which the root node is evaluated
to 1, since β must assign y1 = 1 in order to satisfy C.

39

Example 7.6. Apply the reduction described in Theorem 7.5 to the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)).

Solution. We introduce Boolean variables y1 and y2, where y2 ↔ (x2∨x3), and y1 ↔ (x1∧ y2. Then
F (x1, x2, x3) is satisfiable iff

y1 ∧ (y1 ↔ (x1 ∧ y2)) ∧ (y2 ↔ (x2 ∨ x3))

is satisfiable. We now convert the latter to a logically-equivalent 3SAT-formula.

Step 1: replace P ↔ Q with (P → Q) ∧ (Q → P).

y1 ∧ (y1 → (x1 ∧ y2)) ∧ ((x1 ∧ y2) → y1) ∧ (y2 → (x2 ∨ x3)) ∧ ((x2 ∨ x3) → y2).

Step 2: replace P → Q with P ∨Q.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ ((x1 ∧ y2) ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∨ x3) ∨ y2).

Step 3: apply De Morgan’s rule.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∧ x3) ∨ y2).

Step 4: distribute ∨ over ∧.

y1 ∧ ((y1 ∨ x1) ∧ (y1 ∨ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ x2 ∨ x3) ∧ ((x2 ∨ y2) ∧ (x3 ∨ y2)).

Step 5: Repeat last literal enough times to make three literals per clause and use clause notation.

{(y1, y1, y1), (y1, x1, x1), (y1, y2, y2), (x1, y2, y1), (y2, x2, x3), (x2, y2, y2), (x3, y2, y2)}.

40

For the reduction from SAT to 3SAT, it’s fair to ask why it is necessary to add new y-variables and
through so many steps to transform F to a set of 3SAT clauses. For example, why not just map F to

{(x1, x1, x1), (x2, x3, x3)}?

The problem is that not all formulas are this simple, and some relatively simple formulas may require
an exponential number of steps if no new variables are introduced. As an example, consider the
formula

F (x1, . . . , x2n) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

This formula is in what is called disjunctive normal form (DNF) since it is an OR of AND’s.
Moreover, to convert it to a logically equivalent formula in conjunctive normal form (CNF), an
AND of OR’s, would require a number of steps that is exponential with respect to n. This is because
it’s logically equivalent CNF form has 2n clauses! Verify this for n = 2 and n = 3 by repeatedly
applying the distributive rule of ∨ over ∧.

Although it is seems lengthy even for the simplest of formulas, the reduction method used in
Example 7.6 has the advantage of requiring a maximum of C > 0 steps per logic operation of
F , where C is a constant. This is because all five steps of the procedure require only a constant
number of operations. Therefore, the reduction can be completed in O(|F |) steps which is a linear
(and hence a polynomial) number of steps with respect to the size of F .

41

7.3 Interdomain reductions

In this section we look at interdomain mapping reductions that reduce a problem from one domain
to a problem in a different domain. Some of the different mathematical and computer science domains
include the following. include

Mathematics logic, graph theory, algebra and number theory, numerical optimization, geometry

Computer Science machine learning, network design and analysis, data storage and retrieval,
cryptography/security, operating systems, automata and languages, programming languages
and program optimization.

Of course, as is witnessed by interdomain reductions, different domains are often related in several
ways, and thus there is some subjectivity regarding the classifications of problems. Nevertheless, the
above mentioned domains are considered separate and vast areas of research. As we’ll see in the
following examples, interdomain reductions are often the more surprising and clever of all reductions.

The reductions we study in this section both reduce from the 3SAT logic problem. Because of the
ability to reduce 3SAT to other problem domains, 3SAT plays a crucial role in the study of NP-
completness which we cover in the next lecture.

42

The following theorem uses refers to Clique, the decsion-problem version of Max Clique. In this
case, an instance of the Clique is a simple graph G = (V,E) and an integer k ≥ 0. The problem is
to decide if there is a subset C ⊆ V of k vertices that are pairwise adjacent.

Theorem 7.7. 3SAT ≤p
m Clique.

Proof. Let C be a collection of m clauses, where clause ci, 1 ≤ i ≤ m, has the form ci = li1∨ li2∨ li3.
We now define a mapping f(C) = (G, k = m) for which G has anm-clique if and only if C is satisfiable.
G = (V,E) is defined as follows. V consists of 3m vertices, one for each literal lij, 1 ≤ i ≤ m and
1 ≤ j ≤ 3. Then (lij, lrs) ∈ E iff i) i ̸= r and ii) lij is not the negation of lrs (i.e. the two literals are
logically consistent).

First assume that C is satisfiable. Given a satisfying assignment α for C, let liji , 1 ≤ i ≤ m, denote
a literal from clause i that is satisfied by α, i.e. α(liji) = 1. Then, since each pair of these literals is
consistent, (liji , lrjr) ∈ E for all i ̸= r. In other words,

C = {l1j1 , l2j2 , . . . , lmjm}

is an m-clique for G.

Conversely, assume G has an m-clique. Then by the way G is defined the clique must have the form

C = {l1j1 , l2j2 , . . . , lmjm}

where liji is a literal in ci. This is true since no two literal vertices from the same clause can be adjacent
and so each literal vertex in C must come from a different clause. Moreover, by the definition of G,
C is a consistent set of literals. Hence the assignment aC induced by C satisifes every clause of C,
since αC(liji) = 1 satisfies ci, for each i = 1, . . . ,m. Therefore, C is satisfiable.

Finally, we must show is that f(C) may be computed via an algorithm whose running time is
polynomial in m and n. But this can be done via two nested for-loops that iterate through each
pair of clauses i and r, i ̸= r, and identify all consistent pairs of literals (liji , lrjr). This require O(m2)
steps.

43

Example 7.8. Show the reduction provided in the proof of Theorem 7.7 for input instance

C = {(x1, x1, x2), (x1, x2, x2), (x1, x2, x2)}.

44

Theorem 7.9. 3SAT ≤p
m Subset Sum.

Let C be a collection of m ternary clauses over n variables. The following table provides the reduction
f(C) = (S, t). The table rows correspond to the (n +m)-digit integers comprising set S, while t is
the integer at the bottom whose first n digits are 1’s and whose final m digits are 3’s.

1 2 3 4 · · · n c1 c2 · · · cm
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 1 0 · · · 0
z2 1 0 0 · · · 0 0 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

...
...

...
...

yn 1 0 0 · · · 0
zn 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

...
gm · · · 1
hm · · · 1

t 1 1 1 1 · · · 1 3 3 · · · 3

Number yi correpsonds to literal xi, while zi corresponds to literal xi. Thus, since the first n digits of
t are 1’s, we see that, to construct a subset A whose members sum to t, it must either contain yi or
zi, but not both. Also, the final m digits of yi (respectively, zi) indicate which clauses ci are satisfied
by xi (respectively xi).

Now suppose C is satisfiable via some assignment α. Then the subset A needed to sum to t includes
the following numbers. For 1 ≤ i ≤ n, if α(xi) = 1, then add yi to A; otherwise add zi to A. For
1 ≤ j ≤ m, to determine if gj and/or hj should be added to A, consider clause cj = {lj1, lj2, lj3} and
the sum

σj = α(lj1) + α(lj2) + α(lj3).

Since α satisfies C, we must have σj ≥ 1.

Case 1: σj = 1. In this case add both gj and hj for the cj-column to sum to 3.

Case 2: σj = 2. In this case add only gj for the cj-column to sum to 3.

Case 3: σj = 3. In this case neither gj nor hj need to be added since the cj-column already sums to 3.

. Therefore, it is always possible to find a subset A whose members sum to t.

45

Conversely, suppose there is a subset A ⊆ S whose members sum to t. Then for each i = 1, . . . , n,
either yi ∈ A or zi ∈ A, but not both. This is true since t’s first n digits are 1’s. Let α be an
assignment over the variables of C such that, for each i = 1, . . . , n α(xi) = 1 iff yi ∈ A. Now consider
clause cj, j = 1, . . . ,m. We know that the digits of the members of A in the cj-column sum to 3.
Thus, one of the members must either be yk or zk for some k = 1, . . . , n. In other words, either
yk ∈ A, xk ∈ cj, and α(xk) = 1 or zk ∈ A, xk ∈ cj and α(xk) = 1. In either case, we see that α
satisfies cj. Therefore, since j = 1, . . . , n was arbitrary, α satisfies C.

Finally, notice that each of the 2m+ 2n integers in S can be constructed in O(m+ n) steps, and so
f(C) = (S, t) can be computed in O(m2 + n2) steps.

46

Example 7.10. Show the reduction given in Theorem 7.9 using input instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3), c4 = (x1, x2, x3)}.

Solution.

1 2 3 c1 c2 c3 c4
y1 1 0 0 1 0 0 1
z1 1 0 0 0 1 1 0
y2 1 0 1 0 1 0
z2 1 0 0 1 0 1
y3 1 1 0 1 0
z3 1 0 1 0 1
g1 1 0 0 0
h1 1 0 0 0
g2 1 0 0
h2 1 0 0
g3 1 0
h3 1 0
g4 0 1
h4 0 1

t 1 1 1 3 3 3 3

47

Theorem 7.11. The following decision problems are all NP-complete: Clique, Vertex Cover,
Independent Set, Half Vertex Cover, Half Clique, Subset Sum, and Set Partition.

Proof. All of the following mapping reductions were proved in the Mapping Reducibility lecture.

3SAT ≤p
m Clique ≤p

m Half Clique,

Clique ≤p
m Independent Set,

and
3SAT ≤p

m Subset Sum ≤p
m Set Partition.

Finally, since
SAT ≤p

m 3SAT

by Theorem 7.5, Lemma 7.1 implies that all of the above problems are NP-complete.

48

Theorem 7.12. An instance of the Directed Hamilton Path (DHP) decision problem is a directed
graph G = (V,E) and two vertices a, b ∈ V . The problem is to decide of G possesses a directed
simple path from a to b and having length n − 1. Such a path is called a (Directed) Hamilton
Path (DHP). Then DHP is NP complete.

Proof. The fact that DHP is in NP is left as an exercise. We show a polynomial-time mapping
reduction from 3SAT. Let C be a collection of m ternary clauses over n variables. We proceed to
define f(C) = (G = (V,E), a, b), a directed graph G = (V,E) along with two vertices a, b ∈ V so that
G has a Hamilton path from a to b iff C is satisfiable.

G is defined as follows (see the graph in Example 7.13 for a specific image of the following general
description). G has m clause vertices c1, . . . , cm and n diamond subgraphs, one corresponding to each
variable xi, 1 ≤ i ≤ n. Diamond subgraph Di consists of a top vertex ti, bottom vertex bi, left vertex
li, and right vertex ri, along with edges

(ti, li), (ti, ri), (li, bi), (ri, bi).

In addition, there is a row of 3m− 1 vertices that connect li with ri:

lci1, rci1, si1, lci2, rci2, si2 . . . , lcim, rcim.

The sij vertices, j = 1, . . . ,m − 1, are called separators, while the lcij and rcij pairs, j = 1, . . . ,m,
correspond with each of the m clauses and are used for making round-trip excursions to each of the
clause vertices. Every vertex in the row is bidirectionally adjacent to both its left and right neighbor,
i.e.,

(li, lci1), (lci1, rci1), (rci1, si1), . . . , (si(m−1), lcim), (lcim, rcim), (rcim, ri) ∈ E,

as well as the reversals of each of these edges. Finally, if xi is a literal of clause cj, then edges
(rcij, cj), (cj, lcij) are added. On the other hand, if xi is a literal of clause cj, then edges (lcij, cj), (cj, rcij)
are added.

Finally, for 1 ≤ i ≤ n − 1 the edges (bi, ti+1) are added to connect the n diamond subgraphs, and
a = t1, while b = bn. We leave it as an exercise to show that f(C) = (G = (V,E), a, b) can be
constructed in time that is polynomial with respect m and n. It remains to prove that C is satisfiable
iff f(C) = (G = (V,E), a, b) has a DHP from a to b.

Claim. Suppose P is a DHP from a to b. Then, for all i = 1, . . . , n − 1, P must visit every vertex
in Di before moving to a later diamond Dj, j > i.

Proof of Claim. Suppose by way of contradiction that P is a DHP from a to b, and let Di be the
first diamond where the path moves from Di to Dj, for some j > i, without having visited every
vertex in Di. The only way this can happen is if P moves from either vertex lcik or rcik in Di to
clause vertex ck, and then from there moves to either vertex lcjk or rcjk in Dj. In other words, the
clause vertex ck acts as a bridge between the two diamonds. Without loss of generality, assume that
P is moving from left to right through Di, then moves from lcik to ck, followed by moving to either
lcjk or rcjk. Now consider vertex rcik. The only vertex that has yet to be visited and can reach rcik

49

is separator vertex sik. Thus, rcik must immediately follow sik in P . But then there are no other
vertices that can be visited after rcik since both lcik and sik have been visited, which contradicts that
P is a DHP from a = t1 to b = bn. A similar argument holds if instead the path moves from rcik to
ck.

By the above claim, we see that, when forming a DHP, there is at most one direction (left-to-right
or right-to-left) that a path can move through a diamond Di and be able to visit some clause vertex
c. Moreover, based on how G was defined, the direction is left-to-right (respectively, right-to-left) iff
xi (respectively, xi) is a literal of c. For some path P that traverses through all the diamonds (and
perhaps some of the clause vertices), starting at a and finishing at b, let ∆(P) = (δ1, . . . , δn) denote
a binary vector, where δi denotes the direction that P takes (0 = left-to-right, 1 = right-to-left)
through diamond Di. We’ll call ∆(P) the signature of P . As an example, consider the path P shown
in Example 7.13 that is highlighted in green. Then its signature is ∆(P) = (0, 1) since it moves
left-to-right in the x1 diamond, and right-to-left in the x2 diamond.

Now suppose C is satisfiable via satisfying assignment α. Then there is a path P for which P i) has
signature ∆(P) = (α(x1), . . . , α(xn)), ii) visits every clause vertex exactly once, and iii) is a DHP
from a to b. To see this, consider a clause cj and let i be the least index for which α(xi) satisfies cj.
Then if, for example, α(xi) = 1, then xi is a literal of cj and, by the way in which G was defined, P
may move from right to left in Di and visit cj via the sequence rcij, cj, lcij. Therefore, every clause
clause vertex gets visited exactly once and P is a DHP from a to b.

Conversely, suppose P is a DHP in G and let ∆(P) = (δ1, . . . , δn) be its signature. Then the variable
assignment α defined by α(xi) = δi, i = 1, . . . , n, satisfies C. To see this, consider a clause cj and let
Di be the diamond from where P visits cj. Then by the way G was defined, P can either visit cj by
moving left-to-right, in which case xi is a literal of cj and α(xi) = δi = 0 satisfies cj, or by moving
right to left, in which case xi is a literal of cj and α(xi) = δi = 1 satisfies cj. In either case α satisfies
cj and, since j was arbitrary, we see that α satisfies C.

50

Example 7.13. The following graph shows f(C), where

C = {c1 = (x1, x2, x2), c2 = (x1, x2, x2), c3 = (x1, x2, x2)}

is an instance of 3SAT and f is the reduction reduction given in Theorem 7.12.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1

51

Notice that C is satisfiable via assignment α = (x1 = 0, x2 = 1). Therefore, f(C) must have a
DHP from a to b. In fact, α gives directions for the path: go left in the x1-diamond, right in the
x2-diamond, and visit a clause vertex if i) it has yet to be visited and ii) the clause is satisified by
the direction of movement through the diamond. The figure below shows such a DHP in green.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1

52

8 The Complexity Class co-NP

Given a decision problem L, the complement of L, denoted L, is that decision problem for which
a positive (respectively, negative) instance x of L is a negative (respectively, positive) instance of L.

Example 8.1. If L is the problem of deciding if a positive integer is prime, then define its complement
L.

Solution.

53

Example 8.2. Define the complement of the SAT decision problem.

Solution.

54

8.1 A Logical definition of co-NP

It is left as an exercise to show that if L ∈ P then L ∈ P. On the other hand, it is believed that NP and
co-NP are different complexity classes because each has its own distinct predicate-logic definition.

For example, consider a problem L ∈ NP which has certificate set C and verifier function v(x, c).
Then we may logically write that x is a positive instance of L iff

∃
c∈C

v(x, c)

evaluates to 1.

Now consider its complement L ∈ co-NP. Then we may logically write that x is a positive instance
of L iff it is a negative instance of L iff

¬ ∃
c∈C

v(x, c) ⇔

∀
c∈C

(¬v(x, c)) ⇔

∀
c∈C

v′(x, c).

evaluates to 1, where v′(x, c) = ¬v(x, c). In other words, co-NP problems are logically defined with
a universal predicate-logic statement, while an NP problem is logically defined with an existential
predicate-logic statement. Thus, logically speaking, these classes seem different in that their problems
are complementary to one another.

55

Example 8.3. For each of the following problem definitions, provide the complexity class (P, NP, or
co-NP) that best fits the problem.

Tautology Given a Boolean formula F (x1, . . . , xn) does F evaluate to 1 on all possible 2n binary
input vectors?

Reachability Given a simple graph G = (V,E) and two vertices a, b ∈ V , does there exist a path
in G starting at a and ending at b?

Dominating Set Given a simple graph G = (V,E) and an integer k ≥ 0, does there exist a set D of
k vertices for which every vertex in V −D is adjacent to some vertex in D?

Bounded Cliques Given a simple graph G = (V,E) and an integer k ≥ 0, it true that G has no
k-cliques?

56

9 The Polynomial Hierarchy

The Polynomial Hierarchy generalizes the classes NP and co-NP by allowing for logical definitions
that make use of nested quantifiers that alternate between existential and universal.

Definition 9.1. Decision problem L is a member of complexity class Σp
k iff there are certificate sets

C1, . . . , Ck, variables x1, . . . , xk, and a polynomial-time computable predicate function p(x1, . . . , xk, y)
for which y is a positive instance of L iff the predicate function

Qx1 · · ·Qxk p(x1, . . . , xk, y)

evaluates to 1, where

1. Qi is the ∃-quantifier if i is odd, and is the ∀-quantifier if i is even

2. domain(xi) = Ci and

3. the size of all certificates is bounded by some polynomial q(|y|).

Notice that Σp
1 = NP since both classes have the same logical definition. Also, Σp

0 is defined to
equal P. This makes sense since, having zero quantifier variables, we are left with a polynomial-time
computable predicate function p(y) for deciding if y is positive for L. In other words, L ∈ P.

57

Example 9.2. An instance of decision problem Tautological Clique is a graph G = (V,E), a
nonnegative integer k ≥ 0, and a function f : V → BF that maps each vertex to a Boolean formula.
The problem is to decide if there is a clique C of size k such that, for each v ∈ C, f(v) is a tautology.
Show that Tautological Clique is a member of Σp

2

58

Similar to the definition for co-NP, we may define the complexity class co-Σp
k to equal the set of all

decision problems L, such that L ∈ Σp
k. This complexity class is more commonly referred to as Πp

k

and has the following logical definition that is almost identical with Σp
k, except now the alternating

quantifiers begin with a ∀-quantifier.

Definition 9.3. Decision problem L is a member of complexity class Πp
k iff there are certificate sets

C1, . . . , Ck, variables x1, . . . , xk, and a polynomial-time computable predicate function p(x1, . . . , xk, y)
for which y is a positive instance of L iff the predicate function

Qx1 · · ·Qxk p(x1, . . . , xk, y)

evaluates to 1, where

1. Qi is the ∀-quantifier if i is odd, and is the ∃-quantifier if i is even

2. domain(xi) = Ci and

3. the size of all certificates is bounded by some polynomial q(|y|).

Notice that Πp
1 = co-NP since both classes have the same logical definition. Also, Πp

0 is defined to
equal P. Again, this makes sense since, having zero quantifier variables leaves us with a polynomial-
time computable predicate function p(y) for deciding if y is positive for L. In other words, L ∈ P.

59

Example 9.4. Consider the decison problem Clique Partition, where an instance consists of i)
a simple graph G = (V,E), where each vertex of G is labeled with a nonnegative integer, and
ii) a nonnegative intger k. The problem is to decide if every k-clique of G can be partitioned
into two sets, where the labels of the first set sum to the labels of the second set. Show that
Clique Partition ∈

∏p
2.

60

Definition 9.5. The Polynomial Hierarchy (PH) is the complexity class

PH =
⋃
k≥0

Σp
k ∪

⋃
k≥0

Πp
k.

Example 9.6. For each decision problem L defined below, provide a complexity class C for which
the statement L ∈ C is true. Moreover, C should be chosen so that it is the best possible, meaning
that it is the least complex of all possible valid choices. For example, if L is in both P and NP, then
P is the better choice. The choices for C are P, NP, co-NP, Σp

2, and Πp
2.

1. An instance of L consists of a simple graph G = (V,E) and an integer k ≥ 0. The problem is
to decide if every Vertex Cover of G has a size that is greater than or equal to k.

2. An instance of L consists of i) a simple graph G = (V,E), where each vertex of G is labeled
with a nonnegative integer, and ii) a nonnegative intger k. The problem is to decide if there
exists a k-clique of G that can be partitioned into two sets, where the labels of the first set sum
to the labels of the second set.

3. An instance of L consists of i) a simple graph G = (V,E), and ii) a nonnegative intger k. The
problem is to decide if G has a vertex cover with size less than 500.

4. An instance of L consists of i) a set of 3SAT clauses C, and ii) an integer k ≥ 0. The problem
is to decide if every subset of C of size k can be satisfied by at least three different assignments
(over only the variables included in the subset).

5. An instance of L consists of i) a set of 3SAT clauses C, and ii) an integer k ≥ 0. The problem
is to decide if there exists a subset A of C of size 2k, such that every subset B of A of size k is
unsatisfiable.

61

