Review of Big-O Notation

Last Updated: August 19th, 2023

1 Big-O Notation

Big-O notation is useful for making statements about the growth of a function $f(n), n$ a natural number, whose values may seem difficult or impossible to compute. The statements we care most about are those that state upper and/or lower bounds on f 's growth. Although we may not know the exact bounds (since we may not know the exact values of f), we may be able to determine meaningful ones in case we know the following two things:

1. the rule, call it $g(n)$, for the fastest growing term (ignoring constants) of the bounding function, and
2. that there exists a constant $c>0$ such that, $c g(n)$ provides a bound for f, for sufficiently large n.

Example 1.1. Carol has programmed the Insertion Sort algorithm to run on her laptop. What upper bound can she provide on the elapsed time $t(n)$ that will occur on her laptop clock after Insertion Sort has sorted an integer array of size n ? She knows that the worst case occurs when the input array is sorted in reverse order, and in this case a total of

$$
\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2}
$$

comparisons and swaps must be performed in order to sort such an array. In this case, the rule for the fastest growing term of the upper-bounding function is $g(n)=n^{2}$. Also, she knows that each comparison and swap requires at most two machine instructions, and that each machine instruction requires at most 10^{-8} seconds to execute. Therefore, there is a $c>0$ such that $c g(n)$ is an upper bound for the elapsed time.

Let $f(n)$ and $g(n)$ be functions from the set of nonnegative integers to the set of nonnegative real numbers. Then

Big-O $f(n)=\mathrm{O}(g(n))$ iff there exist constants $c>0$ and $k \geq 1$ such that $f(n) \leq c g(n)$ for every $n \geq k$.
$\operatorname{Big}-\Omega f(n)=\Omega(g(n))$ iff there exist constants $c>0$ and $k \geq 1$ such that $f(n) \geq c g(n)$ for every $n \geq k$.

Big- $\Theta f(n)=\Theta(g(n))$ iff $f(n)=\mathrm{O}(g(n))$ and $f(n)=\Omega(g(n))$.
little-o $f(n)=\mathrm{o}(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
little- $\omega f(n)=\omega(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Example 1.2. From the above discussion we have $f(n)=3.5 n^{2}+4 n+36=\Theta\left(n^{2}\right)$ since

$$
3.5 n^{2} \leq f(n)=3.5 n^{2}+4 n+36 \leq 3.5 n^{2}+4 n^{2}+36 n^{2}=43.5 n^{2}
$$

is true for all $n \geq 1$. And so $f(n)=\Theta\left(n^{2}\right)$, where $c_{1}=3.5$ and $c_{2}=43.5$ are the respective lower and upper-bound constants.

Definition 1.3. The following table shows the most common kinds of rules for $g(n)$ that are used within big-O notation.

Function	Type of Growth
1	constant growth
$\log n$	logarithmic growth
$\log ^{k} n$, for some integer $k \geq 1$	polylogarithmic growth
n^{k} for some positve $k<1$	sublinear growth
n	linear growth
$n \log n$	log-linear growth
$n \log ^{k} n$, for some integer $k \geq 1$	polylog-linear growth
$n^{j} \log ^{k} n$, for some integers $j, k \geq 1$	polylog-polynomial growth
n^{2}	quadratic growth
n^{3}	cubic growth
n^{k} for some integer $k \geq 1$	polynomial growth
$2^{\log ^{c} n}$, for some $c>1$	quasi-polynomial growth
a^{n} for some $a>1$	exponential growth

Example 1.4. Returning to Example 1.1, using big-O notation Carol can say that, when running Insertion Sort on her laptop with an input of size n, the elapsed time equals $\mathrm{O}\left(n^{2}\right)$ seconds. Also, since Insertion Sort requires at least n comparisons for any input, she may also say that its running time equals $\Omega(n)$ seconds.

Theorem 1.5. The following are all true statements.

1. $1=o(\log n)$
2. $\log n=o\left(n^{\epsilon}\right)$ for any $\epsilon>0$
3. $\log ^{k} n=o\left(n^{\epsilon}\right)$ for any $k>0$ and $\epsilon>0$
4. $n^{a}=o\left(n^{b}\right)$ if $a<b$, and $n^{a}=\Theta\left(n^{b}\right)$ if $a=b$.
5. $n^{k}=o\left(2^{\log ^{c} n}\right)$, for all $k>0$ and $c>1$.
6. $2^{\log ^{c} n}=o\left(a^{n}\right)$ for all $a, c>1$.
7. For nonnegative functions $f(n)$ and $g(n)$,

$$
(f+g)(n)=\Theta(\max (f, g)(n)) .
$$

8. If $f(n)=\Theta(h(n))$ and $g(n)=\Theta(k(n))$, then $(f g)(n)=\Theta((h k)(n))$.
9. If $f(n)=o(g(n))$ then $f(n)=\mathrm{O}(g(n))$.
10. If $f(n)=\omega(g(n))$ then $f(n)=\Omega(g(n))$.

Example 1.6. For each of the following, state whether $f(n)=\mathrm{O}(g(n)), f(n)=\Omega(g(n))$, or both, i.e. $f(n)=\Theta(g(n))$.

1. $f(n)=3 n+5, g(n)=10 n+6 \log n$.
2. $f(n)=\sqrt{n} \cdot \log ^{2} n, g(n)=\sqrt[3]{n} \log ^{3} n$.
3. $f(n)=10 \log n, g(n)=50 \log n^{2}$.
4. $f(n)=n^{2} / \log n, g(n)=n \log ^{2} n$.
5. $f(n)=n 2^{n}, g(n)=3^{n}$.
