Made with Goodnotes

Qi] Refer to $L O 5$ from previous week soln.
Q2) a) Minimum no. of edit operations needed to convert one word to another.
$b]$

$$
d(i, j)=\left\{\begin{array}{lc}
i & i f i=0 \\
j & i f j=0 \\
\min (d(i-1, j)+1, d(i, j-1)+1, d & \left.(i-1, j-1)+\left(u_{i} \neq v_{j}\right)\right)
\end{array}\right.
$$

c] $u=c b b c c a \quad v=b c c a b a$.

	λ	b	c	c	a	b	a
λ	0	1	2	3	4	5	6
c	1	1	1	2	3	4	5
b	2	1	2	2	3	3	4
b	3	2	2	3	3	4	4
c	4	3	2	3	4	4	5
c	5	4	3	2	3	4	5
a	6	5	4	3	$2 e$	36	4

\therefore Total edits from cbbcca to becaba are 4
\rightarrow delete $c \Rightarrow$ bbcca; delete $b \Rightarrow$ bcca.
\rightarrow ald $b \Rightarrow b$; add $a \Rightarrow b c c a b a$

QB] $a]$

b)

c] reachable $\left(G_{f}, s, t\right)$
$G_{+} \Rightarrow$ graph network
$s \Rightarrow$ origin of path p.
$t \Rightarrow$ Eerminativy point of path P.
Q4] a] If soot does not have a task presumably a^{\prime} then it would mean that the time slot k. This will then result in Sopt having less no. of tasks than greedy soln. This is a contradiction as supt should have the max no, of tasks possible. If supt had no tusk at be then we could add taste a at any tinge \& have a more profitable solution. which contradicts the
b] The greedy algorithm's purpose is to make a solution with maximized profit. At a given time t_{k}, the algorithm can pick from a list of tasks in decreasing order of a chicveable profit. Af this point, the algorithm will pickle the most profitable task given its deadline fits. Hor a replacement to occur we cannot decrease the profit of the fash as it will keep going down further ahead. Therefore for a replacement to $o c c c o s$ profit of $a \& a^{\prime}$ should necessarily be equal orig possible $p \geqslant p^{\prime}$. When the algorithm reaches time slot K, since neither a ora' have yet to be scheduled, both will appear in L_{k}. Moreover since the algorithm selects a, it follows that $p \geqslant p^{\prime} \&$ so replacing a^{\prime} with a in Soptresultsin another
©] a] optimal solution which agree with S from m down to k.

$$
\begin{aligned}
& P(i)=\left\{\begin{array}{l}
0 \\
\left.\min _{1 \leq k \leq i} \text { (penalty }(k, i)+P(k-1)\right)_{\text {otherwise }} \\
\text { if i=0 }
\end{array}\right. \\
& \text { penalty }(k, i)=\left\{\begin{array}{l}
\infty \quad \text { if } \sum_{j-k}^{i} \omega_{j}>M
\end{array}, \begin{array}{l}
\left(M-\sum_{j=k}^{i} \omega_{j}\right)^{2} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

b] i | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(i)$ | 0 | 49 | 16 | 52 | 25 | 50 | 36 | 26 |
| 2 | | | | | | | | |

6] a] Proof of correctness of Primes is similar, to Kmskal's. In Kwiskal's, edges are sorted according to their weights. In this manner, the negative edges will be handled by the union find data structure. Negative wu ghk edges that don't lead to a cycle will be considered as they can be adv antageons to the MST. Bung able to detect a cycle formation in this case leaps Princess handle negative edge weights. There is no neguinement that edges have nonolyatine weight. Au t thin mattes is that the edges have an ordering based on resplectities weights. No stop of the proof uses $W>=0$
b) Let $W \angle O$ have the least weight of any edge of G. Then Eswar should add $[w]$ to each edge of a so that the least weight will now equal $\omega+[\omega]=0$ \& he way now use the program. Now suppose the program returns an MST 7 with cost (. Ween the actual cost for 1 based on G's original weights is $\operatorname{cost}(C)=(e-1)[\omega]$ since $[\omega]$ must be subtracted from each edges $(n-1)$ of T.

Wo Makeup
LOTa]

$$
\begin{aligned}
& 86-37(2)=12 \\
& 37-12(3)=1 \\
& 37-12(3)=1 \\
& 37-(86-37(2))(3)=1 \\
& 37-86(3)+37(6)=1 \\
& 37(7)-86(3)=1
\end{aligned}
$$

\therefore multiplicative inverse $=7$.
b]

$$
\begin{aligned}
& \text { b] } a^{\frac{n-1}{2}}=\left(\frac{a}{n}\right) \bmod n \\
& \Rightarrow 2^{2}=\frac{2}{5} \bmod 5
\end{aligned}
$$

$\Rightarrow 4$ mod 5 三- 1

$$
\therefore \text { ches }=-1
$$

$\frac{2}{5} \operatorname{med} 5$

$$
-1 \equiv-1 \bmod 5
$$

\therefore HSS = Re2S \therefore a is an accompluce forn $=5$ being prime.
(02) a]

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{n} 16}=n^{2} \\
& f(n)=n^{\log _{3} a}=n^{2} \\
& \because n^{\log _{b} a}=\theta(f(n)) \\
& \therefore T(n)=\theta\left(n^{2} \log n\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) } T(n)=O(n \cdot 1 . \sqrt{)} \\
\Rightarrow T(k) \leq c k^{1.5} \text { for } k<n & \Rightarrow 1 \leq \frac{\sqrt{2} c-c}{\sqrt{2}} \\
\therefore 2 C\left(\frac{n}{2}\right)^{1.5}+n^{1.5} \leq c n^{1.5} & \Rightarrow 1 \leq \frac{c(\sqrt{2}-1)}{\sqrt{2}} \\
\Rightarrow \quad \frac{2 c}{2^{1.5}+1 \leq c} & \Rightarrow \frac{\sqrt{2} \leq c(\sqrt{2}-1)}{\sqrt{2}}+1 \leq c
\end{array} \quad \Rightarrow \frac{\sqrt{2}}{\sqrt{2}-1} \leq c
$$

$103 \sqrt{a}$

$$
\begin{aligned}
& \text { ba] } \begin{array}{l}
r=a e+b g \Rightarrow P_{5}+P_{6}-P_{2}+P_{4} \\
s=a f+b h \Rightarrow P_{1}+P_{2} \\
t=c e+d g \Rightarrow P_{3}+P_{4} \\
u=c f+d h \Rightarrow-P_{7}+P_{5}+P_{1}-P_{3} \\
\text { b] } \quad 5412 \\
5
\end{array} 71 \begin{array}{llllll}
1 & 13 & 9 & 10 & 16
\end{array}
\end{aligned}
$$

$$
541 \begin{aligned}
& 5 \\
& 12
\end{aligned} 8,713 \quad 9 \quad 10116
$$

$45 \quad 8 \quad 12 \quad 4 \quad 13 \quad 9 \quad 10 \quad 16$

L04]a]\&b] refer to 107 10~18-2023.
$[06] 8$ tep $\Rightarrow a, b, 1$ step $2 \Rightarrow e, d, 2 \quad$ step $3 \Rightarrow e, c, 3$

find $(e) \Rightarrow d$ find $(c)=c$

$$
\begin{aligned}
& 45 \quad 7812 \\
& 457812 \\
& 13 \quad 91016 \\
& 14578910121316
\end{aligned}
$$

Step $u \Rightarrow a, e, 4$
find $(a)=a$
find $(e)=c$

step $5 \Rightarrow b, d 5$
find $(b)=a$
find $(d)=a$

Step $6 \Rightarrow e, f, 6$
find (e $)=a$
find $(f)=f$
(d)

