NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit each solution on a separate sheet of paper.

Problems

LO5. Answer the following with regards to a correctness-proof outline for Prim's algorithm.
(a) In the correctness proof of Prim's algorithm, suppose $T=e_{1}, \ldots, e_{n-1}$ are the edges selected by Prim's algorithm (in that order) and $T_{\text {opt }}$ is an mst that uses edges e_{1}, \ldots, e_{k-1}, but for which $e_{k} \notin T_{\text {opt }}$. Explain why e_{k} is incident with one vertex in T_{k-1} (Prim's tree after round $k-1$) and with one vertex not in T_{k-1}. Hint: your answer should have nothing to do with the fact that $e_{k} \notin T_{\text {Opt }}$.

Solution. Since e_{k} is added to T_{k-1} in Round k of Prim's algorithm, it must be incident with exactly one vertex in T_{k-1}. Otherwise, it would not be a candidate for selection in Round k.
(b) Since $e_{k} \notin T_{\text {opt }}$, it follows that $T_{\text {opt }}+e_{k}$ has a cycle C. Explain why there must be an edge $e \in C$ for which i) $e \neq e_{k}$ and ii) e is incident with one vertex in T_{k-1} and with one vertex not in T_{k-1}. Furthermore, explain why $w(e) \geq w\left(e_{k}\right)$.

Solution. Since cycle C possesses an edge e_{k} that is incident with some vertex not in T_{k-1} and also some vertex that is in T_{k-1}, it follows that the cycle enters T_{k-1} via e_{k} and thus must exit T_{k-1} via some other edge, call it e. Hence, e is connected to T_{k-1} and is thus a candidate for selection during Round k. However, since e_{k} was chosen over e, it follows that $w\left(e_{k}\right) \leq w(e)$.
(c) Explain why $T_{\mathrm{Opt}}-e+e_{k}$ is also an mst, i.e. a tree of minimum cost.

Solution. Since e and e_{k} belong to the only cycle of connected graph $T_{\mathrm{Opt}}+e_{k}$, removing e keeps the graph connnected but now the graph becomes acyclic, hence a tree. Also, it is an mst since $w\left(e_{k}\right) \leq w(e)$, so its cost does not exceed (in fact equals) that of $T_{\text {opt }}$.

LO6. The tree below shows the state of the binary min-heap at the beginning of some round of Prim's algorithm, applied to some weighted graph G. If G has edges

$$
(a, f, 6),(d, g, 4),(f, g, 10),(f, h, 2),(f, k, 3)
$$

then draw a plausible state of the heap at the end of the round.

Solution.

LO7. Answer the following.
(a) Provide the dynamic-programming recurrence for computing the distance $\mathrm{D}(u, v)$, from a vertex u to a vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(x, y)$ gives the cost of edge $e=(x, y)$, for each $e \in E$. The recurrence should allow one to compute the distance from a single source to all other vertices in a linear number of steps. Hint: step backward from v.

Solution.

$$
\mathrm{D}(u, v)= \begin{cases}0 & \text { if } u=v \\ \infty & \text { if } \operatorname{deg}^{+}(v)=0 \\ \min _{(w, v) \in E}(c(w, v)+\mathrm{D}(u, w)) & \text { otherwise }\end{cases}
$$

(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the
left of v. The vertices of G are a-h, while the weighted edges of G are

$$
(a, b, 1),(a, e, 2),(a, f, 3),(b, c, 3),(b, g, 2),(c, d, 4),(c, g, 2),(c, h, 5),(d, h, 2),(e, b, 3),(e, f, 4)
$$

$$
(f, b, 4),(f, c, 3),(f, g, 1),(g, d, 5),(g, h, 2)
$$

(c) Starting from left to right in topological order, use the recurrence to compute

$$
d(a, a), \ldots, d(a, h) .
$$

Solution.

$$
\begin{gathered}
D(a, a)=0 . \\
D(a, e)=2 . \\
D(a, f)=\min (4+D(a, e), 3+D(a, a))=\min (4+2,3+0)=3 . \\
D(a, b)=\min (1+D(a, a), 3+D(a, e), 4+D(a, f))=\min (1+0,3+2,4+3)=1 . \\
D(a, c)=\min (3+D(a, b), 3+D(a, f))=\min (3+1,3+3)=4 . \\
D(a, g)=\min (2+D(a, b), 2+D(a, c), 1+D(a, f))=\min (2+1,2+4,1+3)=3 . \\
D(a, d)=\min (5+D(a, g), 4+D(a, c))=\min (5+3,4+4)=8 . \\
D(a, h)=\min (5+D(a, c), 2+D(a, d), 2+D(a, g))=\min (5+4,2+8,2+3)=5 .
\end{gathered}
$$

LO8. Do/answer the following.
(a) Draw the implication graph $G_{\mathcal{C}}$ associated with the 2SAT instance

$$
\mathcal{C}=\left\{\left(\bar{x}_{1}, x_{2}\right),\left(\bar{x}_{1}, x_{3}\right),\left(\bar{x}_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(\bar{x}_{3}, x_{4}\right),\left(\bar{x}_{3}, \bar{x}_{4}\right)\right\} .
$$

Solution.

(b) Apply the improved 2SAT algorithm to obtain a satisfying assignment for \mathcal{C}. When deciding on the next reachability set R_{l} to compute, follow the literal order $l=x_{1}, \bar{x}_{1}, \ldots, x_{4}, \bar{x}_{4}$. For each consistent reachability set encountered, provide the partial assignment $\alpha_{R_{l}}$ associated with R_{l} and draw the reduced implication graph before continuing to the next reachability set. Note: do not compute the reachability set for a literal that has already been assigned a truth value. Provide a final assignment α and verify that it satisfies all six clauses.

Solution. $R_{x_{1}}=\left\{x_{1}, \bar{x}_{1}, \ldots, x_{4}, \bar{x}_{4}\right\}$ is inconsistent, while $R_{\bar{x}_{1}}=\left\{\bar{x}_{1}\right\}$ which is consistent and so $\alpha_{R_{\bar{x}_{1}}}=\left(x_{1}=0\right)$. Now remove x_{1} and \bar{x}_{1} from the implication graph including all edges incident with these vertices. Then $R_{x_{2}}=\left\{x_{2}, \bar{x}_{2}, \ldots, x_{4}, \bar{x}_{4}\right\}$ is inconsistent, while $R_{\bar{x}_{2}}=\left\{\bar{x}_{2}, \bar{x}_{3}, x_{4}\right\}$ which is consistent and so $\alpha_{R_{\bar{x}_{2}}}=\left(x_{2}=0, x_{3}=0, x_{4}=1\right)$. Final assignment:

$$
\alpha=\alpha_{R_{\bar{x}_{1}}} \cup \alpha_{R_{\bar{x}_{2}}}=\left(x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=1\right) .
$$

(c) Suppose a Reachability-oracle answers "yes" to the query reachable $\left(G_{\mathcal{C}}, \bar{x}_{2}, x_{2}\right)$. If \mathcal{C} is satisfiable via assignment α, then what is the value of $\alpha\left(x_{2}\right)$? Explain.

Solution. $\alpha\left(x_{2}\right)=1$ since $R_{\bar{x}_{2}}$ is inconsistent (it contains x_{2}) and, since \mathcal{C} is satisfiable, it must be the case that $R_{x_{2}}$ is consistent, in which case any satisfying assignment α must satisfy $\alpha\left(x_{2}\right)=1$.

LO9. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction fromm problem A to problem B.

Solution. See Definition 2.1 of the Mapping Reducibility lecture.
(b) Suppose $(G, k=3)$ is an instance of the Clique decision problem, where G is drawn (in black) below. Draw $f(G, k)$, where f is the mapping reduction from Clique to the Half Clique decision problem.

Solution. $G^{\prime}=f(G, k)$ is drawn above as G with two additonal (red) vertices and nine additional (red) edges.
(c) Verify that f is valid for input (G, k) in the sense that both (G, k) and $f(G, k)$ are either both positive instances or both negative instances of their respective problems. Defend your answer.

Solution. Both (G, k) and $G^{\prime}=f(G, k)$ are positive instances since, e.g., $C=\{1,5,6\}$ is a 3-clique for G while $C^{\prime}=\{1,5,6,9,10\}$ is a half-clique for G^{\prime}.

