Made with Goodnotes

$$
\begin{aligned}
& [02] a] T(n)=4 T\left(n(2)+n^{\log _{4}} 8\right. \\
& n^{\log _{b} a}=n^{\log _{2} 4}=n^{2} \\
& n^{\log _{4} 8}=n^{1 \cdot 5} \\
& \therefore \text { casel: } T(n)=\theta\left(n^{2}\right) \quad \epsilon=0.5 \\
& \text { b] } T(n) \leq C k^{2.5} \\
& \Rightarrow 4 C\left[\frac{n}{2}\right]^{3.5}+4 n^{2.5} \leq \mathrm{cn}^{2.5} \\
& \Rightarrow n^{2.5}\left[\frac{4 c}{2^{2.5}}+4\right] \leq c x^{2.5} \\
& \Rightarrow \quad \frac{c}{\sqrt{2}}+4 \leq c \\
& \Rightarrow \quad 4 \leq c-\frac{c}{\sqrt{2}} \\
& \Rightarrow \quad 4 \leq \frac{C \sqrt{2}-c}{\sqrt{2}} \\
& \Rightarrow \frac{4 \sqrt{2}}{\sqrt{2}-1} \leq C
\end{aligned}
$$

[03] a] When attempting to reduce the array size by 25% via random pivot selection, followed by partitioning, the worst case occurs when the desired lies in the interval $[n|4,3 n| y]$. In this case, the pivot must also be selected from this intenval which has a probability of 0.5 . Thus $1 / 0.5=2$. It is the expected no. of pivot selections needed to reduce the array by $28 \% \mathrm{R}$ since a constant no. of pivot selections \& partition steps regciire $O(n)$ steps we get the reccurence $T(n)=T(3 n \mid 4)+n$.

$$
\begin{aligned}
b] x_{1} & =10100101 \quad x_{L}=1010 \quad x_{R}=0101 \\
\varphi & =11110000 \quad Y_{L}=1111 \quad \varphi_{R}=0000 \\
x y & =1687240 \\
& =39600 \\
P_{1} & =10010110=150 \\
P_{2} & =00000000=0 \\
P_{3} & =11100001=225 \\
x_{y} & =P_{1} \times 2^{n}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{n r_{2}}+P_{2} \\
& =150 \times 2^{8}+(225-150-0) \times 2^{4}+0 \\
& =39600
\end{aligned}
$$

L04] a] n being a positive power of 2 maker it constantly even. Then $\omega_{n}^{i} k-\omega_{n}^{j}$ are both roots of unity. Furthermore, squares of the $n^{\text {in }}$ roots of unity yield the $n / 2$ roots of unity \& so problem size gets halved. Thereby when evaluating these roots, no. of stops are $O(n \log n)$

$$
\begin{aligned}
& \text { b] } \operatorname{DFT}_{4}^{-1}(5,2,3,-4) \\
& D F T_{2}^{-1}(5,3) \\
& \text { odd } \\
& \underset{\text { even }}{\mathrm{DFF}_{2}^{-1}}(2,-4) \\
& \Rightarrow D F T_{2}^{-1}(5,3)=(5,5)+(3,-3) \\
& =\frac{1}{2}(8,2) \\
& D F T_{2}^{-1}(2,-4)=(2,2)+(-4,4) \\
& =\frac{1}{2}(-2,6) \\
& =(4,1) \\
& (-1,3) \\
& 2(4,1,4,1) \\
& (-1,3,-1,3) \\
& \Rightarrow(4,1,4,1)+(-1(1), 3(-1), 1(-1), 3(i)) \\
& \Rightarrow \quad(4-1,1-3 i, 4+1,1+3 i) \\
& \Rightarrow \quad(3,1-3 i, 5,1+3 i)
\end{aligned}
$$

(os)a] it An i-neighboring path from s to v that uses exactly one edge not in Di
ii) $d_{\rightarrow i}(s, v)$ is minimum corf of any i neighboring path from s to v
b] The greedy choice is to add the vertex V to DDT_I that has the minimum cost of any i-neighboxing path from S to V
C] Let P be the i-neighboring path from s to N^{*} where $\begin{array}{ll}\operatorname{cost}(P) & =l_{i}\left(S, V^{*}\right) \text {. Let } R \text { be another path from stor } V^{*} \text {. } \\ \text { where } S\end{array}$ where $s \ldots . . u \in D D T_{i}$ \& $v \notin P D T_{i}$. Now vertex v has to exist if $V^{*} \notin D D T_{i}$. So $Q=s, \ldots u, v$ is an i-neighboring path \& since P is ninninum cost of all paths \& Q is a subpath of R then $\operatorname{cost}(R)>\cos t(Q)>\cos f(P)$

$$
\therefore d i(S, V)=d(S, V)
$$

LOG] slept $\because b, e, 1$
find $(b)=b$
find $(e)=e$

sep 4: $a, e, 4$
find $(a)=a$
find $(e)=b$

Step 5: $c, e, 5$
step 2: $c, f, 2$
find $(C)=c$
find $(f)=f$

find $(c)=a$
find $(e)=a$

steps: $e, f, 3$
find $(e)=b$
find $(f)=c$
(b)
(c)
step: $d, e, 6$ find $(d)=d$
find $(e)=a$

