
CECS 528, Learning Outcome Assessment 5, Pink With Solutions in
Back, Fall 2023, Dr. Ebert

NONOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit each solution on a separate sheet of paper.

Problems

LO1. Solve the following problems.

(a) Find the multiplicative inverse of 21 mod 58.

(b) For the Strassen-Solovay primality test, is a = 3 an accomplice or witness to the fact that
n = 5 is not prime? Show all work.

LO2. Solve the following problems.

(a) Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 4T (n/8) + nlog4 8. Defend your answer.

(b) Use the substitution method to prove that, if T (n) satisfies

T (n) = 2T (n/2) + 7n log n

then T (n) = O(n log2 n).

LO3. Solve each of the following problems.

(a) Recall the combine step of the Minimum Distance Pair (MDP) algorithm where, for each
point P in the δ-strip, there is a 2δ × δ rectangle whose bottom side contains P and is
bisected by the vertical line that divides the points into left and right subsets. Explain
why there can be at most 7 other points (from the problem instance) in this rectangle.

(b) Consider the following algorithm called multiply for multiplying two n-bit binary numbers
x and y, where we assume n is even. Let xL and xR be the leftmost n/2 and rightmost
n/2 bits of x respectively. Define yL and yR similarly. Let P1 be the result of calling
multiply on inputs xL and yL, P2 be the result of calling multiply on inputs xR and yR,
and P3 the result of calling multiply on inputs xL + xR and yL + yR. Then return the
value P1 × 2n + (P3 −P1 −P2)× 2n/2 +P2. For the two binary integers x = 11010101 and
y = 01101100, determine the values of P1, P2, and P3 at the root level of recursion, and
verify that xy = P1 × 2n +(P3 −P1 −P2)× 2n/2 +P2. Hint: you may evaluate P1, P2, and
P3 non-recursively using base-10.

LO4. Solve each of the following problems.

(a) When using the FFT algorithm to compute DFT−1
8 (6,−5,−3, 4,−8, 2,−1, 10), provide a

list of all the subproblem instances that must be computed. Hint: there are 15 of them
(including the original problem instance) and DFT−1

4 (−5, 4, 2, 10) is one of them.

1



(b) Compute DFT4(5, 2, 3,−4) using the FFT algorithm. Show the solution to each of the
seven subproblem instances and, for each one, clearly represent it using DFT notation and
apply the formula for computing it. Show all work.

LO5. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm
(TSA).

(a) Let T = t1, . . . , tm be the set of non-overlapping tasks selected by TSA and sorted by
finish time, i.e. f(ti) < f(ti+1) for all i = 1, . . . ,m − 1. Let Topt be an optimal set of
tasks and assume that, for some k ≥ 1, t1, . . . , tk−1 ∈ Topt, but tk ̸∈ Topt. Explain why
there must be at least one task t′ ∈ Topt that overlaps with tk. Hint: “Because if there
was no such task . . .”.

(b) Explain why there is at most one task t′ ∈ Topt that overlaps with tk. Hint: assume there
are two overlapping tasks, t′ and t′′, and explain why this creates a contradiction.

(c) Thus, we can define a new optimal set of tasks T̂opt = Topt − {t′} + {tk} that contains
t1, . . . , tk. Continuing in this manner, we may obtain an optimal set of tasks Topt for
which T ⊆ Topt. Moreover, we also have Topt ⊆ T , since there is no way of add another
task to T that does not overlap with one of T ’s tasks. For example, explain why it would
not be possible to place a task t in between tasks ti and ti+1 for some i = 1, . . . ,m − 1.
Therefore, we have established that T = Topt and TSA is correct.

2



Solutions

LO1. Solve the following problems.

(a) Find the multiplicative inverse of 21 mod 58.

Solution. We have

58 = 21(2) + 16,

21 = 16(1) + 5,

and

16 = 5(3) + 1.

Therefore, we have

16 + 5(−3) = 1 ⇐⇒

16 + (21− 16)(−3) = 21(−3) + 16(4) = 1 ⇐⇒

21(−3) + (58− 21(2))(4) = 58(4) + 21(−11) = 1 ⇒ (21)(−11) ≡ 1 mod 58.

(b) For the Strassen-Solovay primality test, is a = 3 an accomplice or witness to the fact that
n = 5 is prime? Show all work.

Solution. We have 3
5−1
2 = 32 = 9. Also,(

3

5

)
=

(
5

3

)
=

(
2

3

)
= −1.

Finally, 9 ≡ −1 mod 5 and so n = 3 bears witness to the fact that 5 is a prime number.

LO2. Solve the following problems.

(a) Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 4T (n/8) + nlog4 8. Defend your answer.

Solution. By Case 3 of the Master Theorem, T (n) = Θ(nlog4 8). This is because nlog8 4 =
o(nlog4 8).

(b) Use the substitution method to prove that, if T (n) satisfies

T (n) = 2T (n/2) + 7n log n

then T (n) = O(n log2 n).

Solution. Inductive Assumption: T (k) ≤ Ck log2 k for all k < n. Show T (n) ≤ Cn log2 n.
We have

T (n) = 2T (n/2) + 7n log n ≤ 2C(
n

2
) log2(

n

2
) + 7n log n = Cn(log n− 1)2 + 7n log n =

3



Cn log2 n− 2Cn log n+ 7n log n+ Cn ≤ Cn log2 n ⇐⇒ C(2 log n− 1) ≥ 7 log n ⇐⇒

C ≥ 7

2− 1
logn

,

which is true so long as C ≥ 4 and n is sufficiently large. This is because, as n increases,
the right side converges to 3.5.

LO3. Solve each of the following problems.

(a) Recall the combine step of the Minimum Distance Pair (MDP) algorithm where, for each
point P in the δ-strip, there is a 2δ × δ rectangle whose bottom side contains P and is
bisected by the vertical line that divides the points into left and right subsets. Explain
why there can be at most 7 other points (from the problem instance) in this rectangle.

Solution. The 2δ × δ rectangle consists of two δ × δ squares, one on each side of the
problem-instance dividing line. Moreover, we know that any two points in the data set
that are both on one side of the dividing line are at least δ away from each other. Therefore,
in a δ× δ square there can be at most 4 points in the data set within that square. And so
the 2δ × δ rectangle can contain at most 4+4 = 8 data points, one of which is point P .
That leaves at most 7 other points in the rectangle.

(b) Consider the following algorithm called multiply for multiplying two n-bit binary numbers
x and y, where we assume n is even. Let xL and xR be the leftmost n/2 and rightmost
n/2 bits of x respectively. Define yL and yR similarly. Let P1 be the result of calling
multiply on inputs xL and yL, P2 be the result of calling multiply on inputs xR and yR,
and P3 the result of calling multiply on inputs xL + xR and yL + yR. Then return the
value P1 × 2n + (P3 −P1 −P2)× 2n/2 +P2. For the two binary integers x = 11010101 and
y = 01101100, determine the values of P1, P2, and P3 at the root level of recursion, and
verify that xy = P1 × 2n +(P3 −P1 −P2)× 2n/2 +P2. Hint: you may evaluate P1, P2, and
P3 non-recursively using base-10.

Solution. We have x = 213, y = 108, xL = 13, xR = 5, yL = 6, and yR = 12. Thus, P1 = 78,
P2 = 60, and P3 = (18)(18) = 324. Then

P1×2n+(P3−P1−P2)×2n/2+P2 = (78)(256)+(324−78−60)(16)+60 = 23004 = xy = (213)(108).

LO4. Solve each of the following problems.

(a) When using the FFT algorithm to compute DFT−1
8 (6,−5,−3, 4,−8, 2,−1, 10), provide a

list of all the subproblem instances that must be computed. Hint: there are 15 of them
(including the original problem instance) and DFT−1

4 (−5, 4, 2, 10) is one of them.

Solution. DFT−1
8 (6,−5,−3, 4,−8, 2,−1, 10), DFT−1

4 (6,−3,−8,−1), DFT−1
4 (−5, 4, 2, 10),

DFT−1
2 (6,−8), DFT−1

2 (−3,−1), DFT−1
2 (−5, 2), DFT−1

2 (4, 10), DFT−1
1 (6), DFT−1

1 (−5),
DFT−1

1 (−3), DFT−1
1 (4), DFT−1

1 (−8), DFT−1
1 (2), DFT−1

1 (−1), DFT−1
1 (10).

(b) Compute DFT4(5, 2, 3,−4) using the FFT algorithm. Show the solution to each of the
seven subproblem instances and, for each one, clearly represent it using DFT notation and
apply the formula for computing it. Show all work.

Solution. We have

4



DFT1(5) = 5 and DFT1(3) = 3.

DFT2(5, 3) = (5, 5) + (1,−1)⊙ (3, 3) = (8, 2).

DFT1(2) = 2 and DFT1(−4) = −4.

DFT2(2,−4) = (2, 2) + (1,−1)⊙ (−4,−4) = (−2, 6).

DFT4(5, 2, 3,−4) = (8, 2, 8, 2) + (1, i,−1,−i)⊙ (−2, 6,−2, 6) = (6, 2 + 6i, 10, 2− 6i).

LO5. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm
(TSA).

(a) Let T = t1, . . . , tm be the set of non-overlapping tasks selected by TSA and sorted by
finish time, i.e. f(ti) < f(ti+1) for all i = 1, . . . ,m − 1. Let Topt be an optimal set of
tasks and assume that, for some k ≥ 1, t1, . . . , tk−1 ∈ Topt, but tk ̸∈ Topt. Explain why
there must be at least one task t′ ∈ Topt that overlaps with tk. Hint: “Because if there
was no such task . . .”.

Solution. Because if there was no such task, then one could add tk to Topt and obtain a
better solution, which contradicts Topt being optimal.

(b) Explain why there is at most one task t′ ∈ Topt that overlaps with tk. Hint: assume there
are two overlapping tasks, t′ and t′′, and explain why this creates a contradiction.

Solution. If two tasks t′ and t′′ from Topt overlapped with tk, then one of the two, say t′

would have a finish time that comes before the finish time of tk (why ?). Moreover, since
tk−1 ∈ Topt, t

′ would start at or after tk−1. Thus, in round k the algorithm would have
selected t′ instead of tk.

(c) Thus, we can define a new optimal set of tasks T̂opt = Topt − {t′} + {tk} that contains
t1, . . . , tk. Continuing in this manner, we may obtain an optimal set of tasks Topt for
which T ⊆ Topt. Moreover, we also have Topt ⊆ T , since there is no way of add another
task to T that does not overlap with one of T ’s tasks. For example, explain why it would
not be possible to place a task t in between tasks ti and ti+1 for some i = 1, . . . ,m − 1.
Therefore, we have established that T = Topt and TSA is correct.

Solution. If there is a task t that occurs between ti and ti+1, then in round (i+ 1) TSA
would have selected t instead of ti+1 since t starts at or after the end of ti and finishes
before ti+1.

5


