CECS 528, Learning Outcome Assessment 4, Pink, Fall 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit each solution on a separate sheet of paper.

Problem

LO1. Solve the following problems.
(a) Evaluate $2^{175} \bmod 127$.
(b) For the Strassen-Solovay primality test, is $a=2$ an accomplice or witness to the fact that $n=5$ is not prime? Show all work.

LO2. Solve the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=8 T(n / 3)+n^{\log _{3} 7}$. Defend your answer.
(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=4 T(n / 2)+n^{2} \log n,
$$

Then $T(n)=\mathrm{O}\left(n^{2} \log ^{2} n\right)$.
LO3. Solve each of the following problems.
(a) Recall the combine step of the Minimum Distance Pair (MDP) algorithm where, for each point P in the δ-strip, there is a $2 \delta \times \delta$ rectangle whose bottom side contains P and is bisected by the vertical line that divides the points into left and right subsets. Explain why there can be at most 7 other points (from the problem instance) in this rectangle.
(b) For the (non-randomized) Find-Statistic algorithm, determine the value of the pivot M (at the top level of recursion) for

$$
a=56,29,95,46,23,18,78,58,17,99,44,74,59,37,26,83,66,45,19,51,66,92,34
$$

and $k=7$. Show work.
LO4. Solve each of the following problems.
(a) Given degree-3 polynomial $p(x)$ where $p(1)=7, p(i)=4+2 i, p(-1)=-4$, and $p(-i)=$ $4-2 i$. How are the coefficients of p obtained via a Fourier transform? Explain. Note: you do not need to evaluate the transform.
(b) Compute $\mathrm{DFT}_{4}(-2,4,0,5)$ using the FFT method. Show the solution to each of the subproblem instances (including the original problem instance) that must be solved.

