NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit each solution on a separate sheet of paper.

Problems

LO1. Complete the following problems.
(a) Evaluate $\left(3^{30}+2^{20}\right)$ mod 5 . Show work.
(b) Consider the RSA key set ($N=77=7 \cdot 11, e=7$). Determine the decryption key d.

LO2. Complete the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=9 T(n / 3)+n^{2.1}$.
(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=4 T(n / 2)+n^{2},
$$

Then $T(n)=\mathrm{O}\left(n^{2} \log n\right)$. Hint: remember to state the inductive assumption.

Solutions

LO1. Complete the following problems.
(a) Evaluate $\left(3^{30}+2^{20}\right) \bmod 5$. Show work.

Solution. We have, $3^{4} \equiv 1 \bmod 5$, and so

$$
3^{30} \equiv\left(3^{4}\right)^{7} \cdot 3^{2} \equiv 9 \equiv 4 \bmod 5
$$

Also, $2^{4} \equiv 1 \bmod 5$ and thus the same is true for $2^{20}=\left(2^{4}\right)^{5}$. Therefore, $\left(3^{30}+2^{20}\right) \equiv$ $(4+1) \equiv 0 \bmod 5$.
(b) Consider the RSA key set $(N=77=7 \cdot 11, e=7)$. Determine the decryption key d.

Solution. d is the multiplicative inverse of $e=7$ modulo $m=(7-1)(11-1)=60$. Thus, after applying Euclid's algorithm both forward and reverse, we have that $d=43$.

LO2. Complete the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=9 T(n / 3)+n^{2.1}$.

Solution.

By Case 3, $T(n)=\Theta\left(n^{2.1}\right)$.
(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=4 T(n / 2)+n^{2}
$$

Then $T(n)=\mathrm{O}\left(n^{2} \log n\right)$. Hint: remember to state the inductive assumption.
Solution. Assume, $T(k) \leq C k^{2} \log k$ for all $k<n$ and for some constant $C>0$. Show, $T(n) \leq C n^{2} \log n$. We have

$$
\begin{gathered}
T(n) \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2}=C n^{2}(\log n-1)+n^{2}=C n^{2} \log n-C n^{2}+n^{2} \\
\leq C n^{2} \log n \Leftrightarrow C n^{2} \geq n^{2} \Leftrightarrow C \geq 1
\end{gathered}
$$

