CECS 528, Learning Outcome Assessment 2, Pink, Fall 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit each solution on a separate sheet of paper.

Problems

LO1. Complete the following problems.
(a) Compute the Jacobi symbol $\left(\frac{7}{143}\right)$. Hint: $143=13 \times 11$.
(b) Consider the RSA key set $(N=65=5 \cdot 13, e=11)$. Determine the decryption key d.

LO2. Complete the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=10 T(n / 3)+n^{2}$.
(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=T(2 n / 3)+T(n / 3)+n
$$

Then $T(n)=\Omega(n \log n)$. Hint: remember to state the inductive assumption.

Solutions

LO1. Complete the following problems.
(a) Compute the Jacobi symbol $\left(\frac{7}{143}\right)$. Hint: $143=13 \times 11$. Solution.

$$
\begin{aligned}
& =\frac{7}{13} \times \frac{7}{11} \\
& =\frac{13}{7} \times(-1) \times \frac{11}{7}
\end{aligned}
$$

$$
=\left(\frac{6+7}{7}\right)(-1)\left(\frac{7+4}{7}\right)
$$

$$
=\left(\frac{6}{7}\right)^{(-1)}\left(\frac{4}{7}\right)
$$

$=(-1)\left(\frac{7-1}{7}\right)\left(\frac{2}{7} \times \frac{2}{7}\right)$

$$
=(-1)\left(\frac{-1}{7}\right)^{2}
$$

$$
=(-1)(-1)
$$

$$
=\frac{1}{2}
$$

(b) Consider the RSA key set ($N=65=5 \cdot 13, e=11$). Determine the decryption key d. Solution.

$$
\begin{aligned}
(p-1)(q-1) & =48 \\
e d & =1 \bmod 48 \\
11 d & =1 \bmod 48 \\
48 & =11(4)+4 \\
11 & =4(2)+3 \\
4 & =3(1)+1 \\
1 & =4-34) \\
& =4-(11-4(2)) \\
& =4(3)-11 \\
& =[48-11(4)] 3-11 \\
& =48(3)-11(13) \\
d & =-13 \quad \because d \neq-13 \quad d=-13+48
\end{aligned}
$$

LO2. Complete the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=10 T(n / 3)+n^{2}$.
Solution.

$$
\begin{aligned}
& T(n / 3)+n^{2} a \\
& n^{\log _{3} a}=n^{\log _{3} 10} n^{\log _{3} 10}>n^{2} \\
& \therefore f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \\
& \epsilon=\log _{5} \omega-2 \\
& \therefore T(n)=\theta\left(n^{\left.\log _{3} \omega\right)}\right.
\end{aligned}
$$

(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=T(2 n / 3)+T(n / 3)+n
$$

Then $T(n)=\Omega(n \log n)$. Hint: remember to state the inductive assumption.
Solution. $T(k) \geqslant c k \log k$ for $k c n$

$$
\begin{aligned}
& c\left(\frac{2 n}{3}\right) \log \frac{2 n}{3}+\frac{m}{3} \log \frac{n}{3}+n \geqslant c n \log n \\
& \frac{2 c n}{3}(\log 2 n-\log 3)+\frac{c n}{3}(\log n-\log 3)+n \geqslant c n \log n \\
& \frac{2 c n}{3}\left(\log g^{2}+\log n-\log 3\right)+\frac{c n}{3}(\log n-\log 3)+n \geqslant c \log n \\
& \frac{2 c n}{3}+\frac{2 c n \log n}{3}-\frac{2 c n \log 3}{3}+\frac{c n \log n}{3}-\frac{c n \log 3}{n}+n \notinfty, c n \log n
\end{aligned}
$$

$$
\frac{2 c m}{3}+\frac{\beta c m \log n}{\beta}-\frac{\beta^{3} c n \log 3}{\beta}+n \geqslant m \log n
$$

$$
\frac{2 m}{3}+c u \log n-m \log 3+n \geqslant c u \log n
$$

$$
\begin{aligned}
& \frac{2 c u}{3}+n \geqslant c u \log 3 \\
& \frac{2 c}{3}+1 \geqslant c \log 3 \\
& \frac{2 c}{3}-c \log 3 \geqslant-1 \\
& c\left(\frac{2-3 \log 3}{3}\right) \geqslant-1
\end{aligned}
$$

$$
c \geqslant \frac{-1(3)}{2-3(\log 3)}
$$

