CECS 528, Learning Outcome Assessment 11, Pink, Fall 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit each solution on a separate sheet of paper.

Problems

LO7. Answer the following.
(a) Provide the dynamic-programming recurrence for computing the distance $\mathrm{D}(u, v)$, from a vertex u to a vertex v in a directed acyclic graph (DAG) $G=(V, E, c)$, where $c(x, y)$ gives the cost of edge $e=(x, y)$, for each $e \in E$. Hint: step backward from v, rather than forward from u.
(b) Draw the vertices of the following DAG G in a linear left-to-right manner so that the vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the left of v. The vertices of G are a-h, while the weighted edges of G are

$$
\begin{gathered}
(a, b, 2),(a, e, 5),(a, f, 5),(b, c, 5),(b, g, 2),(c, d, 1),(c, g, 4),(c, h, 5),(d, h, 5),(e, b, 1),(e, f, 3), \\
(f, b, 5),(f, c, 2),(f, g, 1),(g, d, 2),(g, h, 3) .
\end{gathered}
$$

(c) Starting from left to right in topological order, use the recurrence to compute

$$
d(a, a), \ldots, d(a, h)
$$

LO8. Do/answer the following.
(a) Draw the implication graph $G_{\mathcal{C}}$ associated with the 2SAT instance

$$
\mathcal{C}=\left\{\left(\bar{x}_{1}, x_{2}\right),\left(\bar{x}_{1}, \bar{x}_{3}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{4}\right),\left(\bar{x}_{2}, \bar{x}_{4}\right),\left(\bar{x}_{2}, \bar{x}_{5}\right),\left(\bar{x}_{3}, \bar{x}_{4}\right)\right\} .
$$

(b) Apply the improved 2SAT algorithm to obtain a satisfying assignment for \mathcal{C}. When deciding on the next reachability set R_{l} to compute, follow the literal order $l=x_{1}, \bar{x}_{1}, \ldots, x_{5}, \bar{x}_{5}$. For each consistent reachability set encountered, provide the partial assignment $\alpha_{R_{l}}$ associated with R_{l} and draw the reduced implication graph before continuing to the next reachability set. Note: do not compute the reachability set for a literal that has already been assigned a truth value. Provide a final assignment α and verify that it satisfies all the clauses.
(c) Suppose 2SAT instance \mathcal{C} is satisfiable and uses 336 variables and 615 clauses. Using the original 2SAT algorithm, what is the least number of queries to a Reachability oracle that needs to be made in order to establish \mathcal{C} 's satisfiability. In other words, if we make fewer than this number of queries then it is possible that the 2 SAT instance \mathcal{C} may be unsatisfiable. Explain.

LO9. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B.
(b) For the mapping reduction f : Subset Sum \rightarrow Set Partition, determine $f(S, t)$ for Subset Sum instance ($S=\{12,15,17,24,26,27\}, t=70$). Show work.
(c) Verify that both (S, t) and $f(S, t)$ are either both positive instances or both negative instances of their respective decision problems. If both are positive, then provide valid certificates for each. Otherwise, explain why neither has a valid certificate.

LO10. An instance of the Quadratic Residue (QR) decision problem is a triple (a, c, m) of positive integers, where $a, c \leq m$, and the problem is to decide if there is an $1 \leq x \leq c$ for which $x^{2} \equiv a \bmod m$.
(a) For a given instance (a, c, m) of $\mathbf{Q R}$ describe a certificate in relation to (a, c, m).
(b) Provide a semi-formal verifier algorithm that takes as input i) an instance (a, c, m), and ii) a certificate for (a, c, m) as defined in part a, and decides if the certificate is valid for (a, c, m).
(c) Suppose m is a b-bit number, explain why b is a more appropriate size parameter than m.
(d) Use the b size parameter to describe the running time of your verifier from part b. Hint: make reference to the complexity of certain arithmetic algorithms.

LO11. Recall the mapping reduction $f:$ HC \rightarrow TSP from Hamilton Cycle to Traveling Salesperson described in lecture.
(a) Given the HC instance G shown below, draw $f(G)$ and indicate its k value.

(b) By providing valid certificates for each, verify that both G and $f(G)$ are positive instances of their respective decision problems. Show work and explain.

