Made with Goodnotes
[07]a] $D(u, v)= \begin{cases}0 & \text { if } u=v \\ \infty & \text { if } \operatorname{deg}^{+}(v)=0 \\ \min _{(w, v) \in E}(c(w, v)+D(v, \omega)) & \text { other wise. }\end{cases}$
b)

c]

$$
\begin{aligned}
& d(a, a)=0 \\
& d(a, e)=5_{2} \\
& d(a, f)=\min ((d(a, e)+3), d(a, a)+5)=\min (8,5)=\frac{5}{2} \\
& d(a, b)=\min ((d(a, f)+5),(d(a, c)+1),(d(a, a)+2)) \\
& \left.d(a, c)=\min (10,6,2)=\frac{2}{2}(d(a, f)+2),(d(a, b)+5)\right)=\min (7,7)=7 \\
& d(a, g)=\min ((d(a, f)+1),(d(a, b)+2),(d(a, c)+4))=\min (6,4,11)=\frac{4}{5} \\
& d(a, d)=\min ((d(a, g)+2),(d(a, c)+1))=\min (6,8)=6 \\
& d(a, h)=\min \left((d(a, d)+5),(d(a, g)+3),(d(a, c)+5)=\min (11,7,8)=\frac{7}{2}\right.
\end{aligned}
$$

$108] a]$
Clause
\bar{x}_{1}, x_{2}
\bar{x}_{1}, \bar{x}_{3}
x_{1}, x_{4}
x_{2}, x_{4}
$\overline{x_{2}}, \overline{x_{4}}$
$\overline{x_{2}}, \overline{x_{5}}$
$\overline{x_{3}}, \overline{x_{4}}$

Implication
$x_{1} \rightarrow x_{2}$
$x_{1} \rightarrow \overline{x_{3}}$
$\bar{x}_{1} \rightarrow x_{4}$
$\overline{x_{2}} \rightarrow x_{4}$
$x_{2} \rightarrow \overline{x_{4}}$
$x_{2} \rightarrow \bar{x}_{5}$
$x_{3} \rightarrow \overline{x_{4}}$

Contrapositive.

$$
\overline{x_{2}} \rightarrow \overline{x_{1}}
$$

$$
x_{3} \rightarrow \overline{x_{1}}
$$

$\overline{x_{4}} \rightarrow x_{1}$
$\bar{x}_{4} \rightarrow x_{2}$
$x_{4} \rightarrow \overline{x_{2}}$
$x_{\sigma} \rightarrow \overline{x_{2}}$
$x_{n} \rightarrow \overline{x_{3}}$

b] $R x_{1}=\left\{x_{1}, x_{2}, \overline{x_{3}}, \overline{x_{4}}, \bar{x}_{5}\right\} \rightarrow$ consistent.

$$
\therefore \alpha R x_{1}=\left\{x_{1}=1 \quad x_{2}=1 \quad x_{3}=0 \quad x_{4}=0 \quad x_{5}=0\right\} .
$$

I] At least 336 queries are needed since for each variable x, we must make sure that either x is not reachable from \bar{x} or \bar{x} is not reachable from x. \therefore In best case, each variable would require one call.

Log] a] Refer to previous C_{S}
b)

$$
\begin{aligned}
& S=\{12,15,17,24,26,27\} \\
& t=70 \\
& M=121 \\
& M / 2=60.5 \\
& \because t>M / 2 \\
& \therefore J=2 T-M \\
&=1 M 0-121 \\
&=19
\end{aligned}
$$

c] Both are positive instances. In $f(s, t)$ addition of J leads to set partition solution. In the case of $(s, \%)$ it leads to t

$$
\begin{aligned}
A^{\prime} \text { sum } & =70 \quad\{12+15+17+26\} \\
B^{\prime} \text { sum } & =121-70+\mathrm{J} \\
& =\frac{70}{2} \\
& =\{24,27,19\} .
\end{aligned}
$$

Lo10]afertificate is a value of x such that $1 \leq x \leq c$.
b] return $x^{2} \% m==a \% m$.
c] b would define the parameter of how bigthe problem is ie. Low many bits would be required.
d] $O\left(b^{2}\right)$ since both squaring a b-bit wo. \& computing the remainders of $a O(b)$ bit no. both require $O\left(b^{2}\right)$ steps.
$[011] a]$

b] G has a positive instance of Hamilton cycle on the following path.

$$
1 \rightarrow 4 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 2 \rightarrow 5 \rightarrow 1 .
$$

Similarity $f(G)$ is also a positive instance as the path $1 \rightarrow 4 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 2 \rightarrow 5 \rightarrow 1$ exists with the save cost 8 \&

