NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit each solution on a separate sheet of paper.

Problem

LO1. Complete the following problems.
(a) Demonstrate each step (line) of Euclid's algorithm on inputs $a=54$ and $b=14$. Then work backwards to provide a linear combination of 54 and 14 that sums to $(54,14)$.
(b) For the Strassen-Solovay primality test with $n=23$, verify that $a=2$ satisfies the test congruence. Do this by evaluating both sides of the test congruence, mod 23.

Solution

LO1. Complete the following problems.
(a) Demonstrate each step (line) of Euclid's algorithm on inputs $a=54$ and $b=14$. Then work backwards to provide a linear combination of 54 and 14 that sums to $(54,14)$.
Solution.

a	$(b)(q)$	r
54	$(14)(3)$	12
14	$(12)(1)$	2
12	$(2)(6)$	0

So $(54,14)=2$ and

$$
\begin{gathered}
14+12(-1)=2 \Leftrightarrow \\
14+(54+14(-3))(-1)=54(-1)+14(4)=2 .
\end{gathered}
$$

(b) For the Strassen-Solovay primality test with $n=23$, verify that $a=2$ satisfies the test congruence. Do this by evaluating both sides of the test congruence, mod 23.

Solution.

We must evaluate both $2^{\frac{23-1}{2}}=2^{11} \bmod 23$, and $\left(\frac{2}{23}\right)$.
We have,

$$
2^{5} \equiv 9 \bmod 23
$$

and

$$
2^{6} \equiv-5 \bmod 23 \Rightarrow 2^{11} \equiv 2^{5} \cdot 2^{6} \equiv(9)(-5) \equiv 1 \bmod 23
$$

Also,

$$
\left(\frac{2}{23}\right)=1
$$

since $23 \equiv-1 \bmod 8$. Therefore, $a=2$ satisfies the test congruence, since $1 \equiv 1 \bmod 23$.

