NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit each solution on a separate sheet of paper.

Problem

- LO1. Complete the following problems.
 - (a) Show each of the subproblem instances that must be solved when using the recursive division algorithm for finding the quotient and remainder of x/y. Do this for x = 136 and y = 18. Make sure to provide the solution to each subproblem instance. Hint: there are nine subproblem instances, including the original problem instance.
 - (b) For the Strassen-Solovay primality test with n = 21, determine whether or not a = 2 is a witness to n not being prime. Do this by evaluating *both* sides of the test congruence, mod 21.

Solutions

- LO1. Complete the following problems.
 - (a) Show each of the subproblem instances that must be solved when using the recursive division algorithm for finding the quotient and remainder of x/y. Do this for x = 136 and y = 18. Make sure to provide the solution to each subproblem instance. Hint: there are nine subproblem instances, including the original problem instance.

Solution.

x	y	q	r
136	18	7	10
68	18	3	14
34	18	1	16
17	18	0	17
8	18	0	8
4	18	0	4
2	18	0	2
1	18	0	1
0	18	0	0

(b) For the Strassen-Solovay primality test with n = 21, determine whether or not a = 2 is a witness to n not being prime. Do this by evaluating *both* sides of the test congruence, mod 21.

Solution.

We must evaluate both $2^{\frac{21-1}{2}} = 2^{10} \mod 21$, and $\left(\frac{2}{21}\right)$. We have,

$$2^5 \equiv 11 \mod 21 \Rightarrow 2^{10} \equiv 121 \equiv -5 \mod 21.$$

Also,

$$\left(\frac{2}{21}\right) = -1$$

since $21 \equiv -3 \mod 8$. Therefore, a = 2 is a witness, since $-5 \not\equiv -1 \mod 21$.