CECS 329, Learning Outcome Assessment 9, November 9th, Fall 2023, Dr. Ebert

Problems

LO5. A natural number $x \geq 1$ is said to be perfect iff the sum of all its divisors (that are less than $x)$ add to x. For example, 28 is perfect since

$$
1+2+4+7+14=28
$$

Using any of the primitive recursive functions defined in the Models of Computation lecture, show that the predicate function $\operatorname{perfect}(x)$ is primitive recursive, where perfect $(x)=1$ iff x is perfect.

LO6. Solve the following problems.
(a) Compute the Gödel number for program $P=T(4,3), J(2,2,2), S(7), Z(4)$. Write your answer as a sum of powers of two minus 1 (see part b for an example). Show all work.
(b) Provide the URM program P whose Gödel number equals

$$
2^{9}+2^{41}+2^{50}+2^{73}-1
$$

Show all work.
LO7. Answer/solve the following.
(a) When simulating the computation $P_{x}(y)$, what is the only step in the simulation for which universal program P_{U} makes use of input y ? Explain.
(b) A universal program P_{U} is simulating a program that has 77 instructions and whose Gödel number is

$$
x=2^{31}+2^{32}+2^{43}+2^{83}+2^{128}+2^{216}+\cdots+2^{c_{77}}-1 .
$$

If the current configuration of the computation of P_{x} on some input has encoding

$$
\sigma=2^{5}+2^{9}+2^{11}+2^{14}-1
$$

then provide the next configuration of the computation and its encoding.
LO8. Answer the following.
(a) Define what it means to be a positive instance of decision problem Self Accept. Hint: "Gödel number x is a positive instance of Self Accept iff \qquad ."
(b) The goal is to show that Self Accept is undecidable. We assume it is decidable by assuming that its characteristic function

$$
f(x)= \begin{cases}1 & \text { if } x \text { is a positive instance of Self Accept } \\ 0 & \text { if } x \text { is a negative instance of Self Accept }\end{cases}
$$

is total computable. Provide the definition for how to compute the "antagonist" function $g(x)$ based on the value of $f(x)$.
(c) By writing the values of $g(0), g(1), \ldots$ in the appropriate table cells (next to the number in that cell), verify that function g is different from each computable function $\phi_{i}, i=0,1, \ldots$, Why does this create a contradiction?

index \backslash input x	0	1	2	\cdots	i	\cdots	self accepting?
$\phi_{0}(x)$	\uparrow	12	7	\cdots	\uparrow	\cdots	no
$\phi_{1}(x)$	8	87	36	\cdots	96	\cdots	yes
$\phi_{2}(x)$	7	5	0	\cdots	\uparrow	\cdots	yes
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$\phi_{i}(x)$	0	32	65	\cdots	\uparrow	\cdots	no
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots

LO9. An instance of the decision problem Infinite Range is a Gödel number x, and the problem is to decide if function ϕ_{x} has an infinite range, meaning that ϕ_{x} has an infinite number of distinct outputs. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x} \text { has an infinite range } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Evaluate $g(x)$ for each of the following Gödel number's x. Note: 2 out of 3 correct is considered passing. Justify your answers.
i. $x=e_{1}$, where e_{1} is the Gödel number of the program that computes the function $\phi_{e_{1}}(y)=\lfloor\sqrt{y}\rfloor$.
ii. $x=e_{2}$, where e_{2} is the Gödel number of the program that computes the function $\phi_{e_{2}}(y)=e_{2}$.
iii. $x=e_{3}$, where e_{3} is the Gödel number of the program that computes $g(x)$ (assuming that $g(x)$ is URM computable).
(b) Prove that $g(x)$ is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 , depending on whether or not ϕ_{x} has an infinite range. Do this by writing a program P that uses g and makes use of the self programming concept. Then show how P creates a contradiction.

