CECS 329, Learning Outcome Assessment 5, October 5th, Fall 2023, Dr. Ebert

Problems

LO1. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from problem A to problem B. Hint: do not assume that A and B are decision problems.
(b) The simple graph $G=(V, E)$ shown below is an instance of the Maximum Independent Set (MIS) optimization problem. Draw $f(G)$, where f is the mapping reduction from MIS to Maximum Clique provided in lecture.

(c) Verify that both G and $f(G)$ have the same solution. Hint: for both problems please assume that a "solution" is represented by a subset of vertices. Justify your answer.

LO2. An instance (\mathcal{C}, m) of Set Splitting is a collection of subsets $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$, where, for each $i=1, \ldots, n, C_{i} \subseteq\{1,2, \ldots, m\}$. The problem is to decide if $\{1,2, \ldots, m\}$ can be partitioned into two sets A and B such that
(a) $A \cup B=\{1,2, \ldots, m\}$
(b) $A \cap B=\emptyset$
(c) $C_{i} \cap A \neq \emptyset$, for all $i=1,2, \ldots, n$
(d) $C_{i} \cap B \neq \emptyset$, for all $i=1,2, \ldots, n$.
(a) For a given instance (\mathcal{C}, m) of Set S plitting describe a certificate in relation to (\mathcal{C}, m).
(b) Provide a semi-formal verifier algorithm that takes as input i) an instance (\mathcal{C}, m) of Set Splitting, ii) a certificate for (\mathcal{C}, m) as defined in part a, and decides if the certificate is valid for (\mathcal{C}, m).
(c) Provide size parameters that may be used to measure the size of an instance of (\mathcal{C}, m) of Set Splitting.
(d) Use the size parameters from part c to describe the running time of your verifier from part b. Defend your answer in relation to the algorithm you provided for the verifier.

LO3. Recall the mapping reduction $f: 3$ SAT \rightarrow Clique from 3SAT to Clique described in lecture. Given the 3SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}, \bar{x}_{3}\right),\left(\bar{x}_{1}, x_{2}, \bar{x}_{3}\right),\left(x_{1}, x_{2}, x_{3}\right),\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)\right\},
$$

answer the following questions about $f(\mathcal{C})$.
(a) How many vertices and edges does the graph of $f(\mathcal{C})$ have? Show work and explain.
(b) What is the k value for $f(\mathcal{C})$? Explain.
(c) Is $f(\mathcal{C})$ a positive instance of Clique? Explain.

LO4. Answer the following. Note: scoring 14 or more points counts for passing.
(a) Write either P, NP, or co-NP next to each of the following decision problems in terms of which one best characterizes the complexity of the problem. Note: there is only one best answer for each. Two points each.
i. An instance of Reachability is a simple graph $G=(V, E)$ and two vertices $u, v \in V$, and the problem is to decide if v is reachable from u, meaning there is a path from u to v.
ii. An instance of Double-SAT is a Boolean formula F and the problem is to decide if there are at least two different assignments that satisfy F. assignments.
iii. An instance of Tautology is a Boolean formula $F\left(x_{1}, \ldots, x_{n}\right)$, and the problem is to decide if F is a tautology, i.e. $F(\alpha)=1$ for every possible assignment α over the variables x_{1}, \ldots, x_{n}.
iv. An instance of 2SAT is a set \mathcal{C} of binary clauses and the problem is to decide if there is an assignment α over the clause variables that forces each clause to evaluate to 1 .
(b) What was the first problem in NP that was established as being NP-complete? (8 points)
i. Directed Hamilton Path
ii. 3SAT
iii. SAT
iv. Clique
(c) Circle the correct answer. Which of the following is not a valid size parameter for the Clique decision problem. (9 points)
i. m is the number of graph edges.
ii. n is the number of graph vertices.
iii. k is the desired clique size.
iv. All of the above are valid size parameters.

LO5. Consider the function $\operatorname{Digit}(x, y)$ which evaluates to the y th digit of x, where digit 0 denotes the ones place, digit 1 denotes the tens place, etc.. For example, $\operatorname{Digit}(5862,0)=2, \operatorname{Digit}(5832,1)=$ 6 , and $\operatorname{Digit}(5832,4)=0$. Note that $\operatorname{Digit}(x, y)$ is primitive recursive.
Now consider the function $\operatorname{Sevens}(x, y)$ which evaluates to x of but with each of digits 0 through y replaced by a 7. For example, Sevens $(5862,0)=5867$, $\operatorname{Sevens}(5832,1)=5877$, and Sevens $(5832,4)=77,777$. Show that Sevens is primitive recursive. You may use the $\operatorname{Digit}(x, y)$ function above as well as any of the primitive recursive functions from the lecture. Hint: using recursion is optional, but offers the most succinct solution.

Solutions

LO1. Answer the following.
(a) Provide the definition of what it means to be a mapping reduction from problem A to problem B. Hint: do not assume that A and B are decision problems.

Solution. See Definition 2.1 of Map Reducibility Lecture.
(b) The simple graph $G=(V, E)$ shown below is an instance of the Maximum Independent Set (MIS) optimization problem. Draw $f(G)$, where f is the mapping reduction from MIS to Maximum Clique provided in lecture.

Solution. $f(G)=\bar{G}$ is shown below.

(c) Verify that both G and $f(G)$ have the same solution. Hint: for both problems please assume that a "solution" is represented by a subset of vertices. Justify your answer.

Solution. G 's maximum independent set is $\{2,4,5,6\}$ which is the maximum clique for $f(G)=\bar{G}$. Therefore, G and \bar{G} have the same solution as is required for a mapping reduction.

LO2. An instance (\mathcal{C}, m) of Set Splitting is a collection of subsets $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$, where, for each $i=1, \ldots, n, C_{i} \subseteq\{1,2, \ldots, m\}$. The problem is to decide if $\{1,2, \ldots, m\}$ can be partitioned into two sets A and B such that
(a) $A \cup B=\{1,2, \ldots, m\}$
(b) $A \cap B=\emptyset$
(c) $C_{i} \cap A \neq \emptyset$, for all $i=1,2, \ldots, n$
(d) $C_{i} \cap B \neq \emptyset$, for all $i=1,2, \ldots, n$.
(a) For a given instance (\mathcal{C}, m) of Set Splitting describe a certificate in relation to (\mathcal{C}, m).

Solution. A certificate is a subset $A \subseteq\{1,2, \ldots, m\}$.
(b) Provide a semi-formal verifier algorithm that takes as input i) an instance (\mathcal{C}, m) of Set Splitting, ii) a certificate for (\mathcal{C}, m) as defined in part a, and decides if the certificate is valid for (\mathcal{C}, m).

Solution.

For each $C \in \mathcal{C}$,

$$
\text { If }(A \cap C=\emptyset) \vee(A-C=\emptyset) \text {, then return } 0 \text {. }
$$

Return 1.
(c) Provide size parameters that may be used to measure the size of an instance of (\mathcal{C}, m) of Set Splitting.

Solution. $n=|\mathcal{C}|$ is the number of subsets, while m is a bound on the size of each subset.
(d) Use the size parameters from part c to describe the running time of your verifier from part b. Defend your answer in relation to the algorithm you provided for the verifier.

Solution. Using a hash table that stores the members of A, on can check the statement $A \cap C=\emptyset \vee A-C=\emptyset$ in $\mathrm{O}(|C|)=\mathrm{O}(m)$ steps. Thus, the loop (and hence verifier) requires $\mathrm{O}(m n)$ steps.

LO3. Recall the mapping reduction $f: 3$ SAT \rightarrow Clique from 3SAT to Clique described in lecture. Given the 3SAT instance

$$
\mathcal{C}=\left\{\left(x_{1}, \bar{x}_{2}, \bar{x}_{3}\right),\left(\bar{x}_{1}, x_{2}, \bar{x}_{3}\right),\left(x_{1}, x_{2}, x_{3}\right),\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)\right\},
$$

answer the following questions about $f(\mathcal{C})$.
(a) How many vertices and edges does the graph of $f(\mathcal{C})$ have? Show work and explain.

Solution. The graph of $f(\mathcal{C})$ has $4 \times 3=12$ vertices and

$$
7+7+8+7+8+6=43
$$

edges. Every pair of distinct clause groups $\left(c_{i}, c_{j}\right)$ produces up to 9 edges, but we must subtract one from this value whenver there is a literal $l \in c_{i}$ whose negation is in c_{j}. For example, for the (c_{1}, c_{2}) pair, the negations of x_{1} and \bar{x}_{2} appear in c_{2}, so we must subtract 2 from 9 to get 7 edges.
(b) What is the k value for $f(\mathcal{C})$? Explain.

Solution. We have $k=4$ since \mathcal{C} has four clauses and \mathcal{C} is satisfiable iff $f(\mathcal{C})$ has a 4 -clique, where the members of the 4 -clique would be literals, one from each clause, each of which gets set to 1 by some assignment α that satisfies \mathcal{C}.
(c) Is $f(\mathcal{C})$ a positive instance of Clique? Explain.

Solution. Yes, since \mathcal{C} is a positive instance of 3SAT (it is satisfied by $\alpha=(1,1,0)), f(\mathcal{C})$ must also be a positive instance of Clique.

LO4. Answer the following. Note: scoring 14 or more points counts for passing.
(a) Write either P, NP, or co-NP next to each of the following decision problems in terms of which one best characterizes the complexity of the problem. Note: there is only one best answer for each. Two points each.
i. An instance of Reachability is a simple graph $G=(V, E)$ and two vertices $u, v \in V$, and the problem is to decide if v is reachable from u, meaning there is a path from u to v.
ii. An instance of Double-SAT is a Boolean formula F and the problem is to decide if there are at least two different assignments that satisfy F. assignments.
iii. An instance of Tautology is a Boolean formula $F\left(x_{1}, \ldots, x_{n}\right)$, and the problem is to decide if F is a tautology, i.e. $F(\alpha)=1$ for every possible assignment α over the variables x_{1}, \ldots, x_{n}.
iv. An instance of 2SAT is a set \mathcal{C} of binary clauses and the problem is to decide if there is an assignment α over the clause variables that forces each clause to evaluate to 1 .

Solution. i: P, ii: NP, iii: co-NP, iv: P
(b) What was the first problem in NP that was established as being NP-complete? (8 points)
i. Directed Hamilton Path
ii. 3SAT
iii. SAT
iv. Clique

Solution. iii (this is Cook's Theorem).
(c) Circle the correct answer. Which of the following is not a valid size parameter for the Clique decision problem. (9 points)
i. m is the number of graph edges.
ii. n is the number of graph vertices.
iii. k is the desired clique size.
iv. All of the above are valid size parameters.

Solution. iii since k does not always reflect the size of a problem instance. For example, graph G could have one million vertices and 1 billion edges, yet $k=5$ (does G have a 5 -clique?).

LO5. Consider the function $\operatorname{Digit}(x, y)$ which evaluates to the y th digit of x, where digit 0 denotes the ones place, digit 1 denotes the tens place, etc.. For example, $\operatorname{Digit}(5862,0)=2, \operatorname{Digit}(5832,1)=$ 6 , and $\operatorname{Digit}(5832,4)=0$. Note that $\operatorname{Digit}(x, y)$ is primitive recursive.
Now consider the function $\operatorname{Sevens}(x, y)$ which evaluates to x of but with each of digits 0 through y replaced by a 7 . For example, $\operatorname{Sevens}(5862,0)=5867$, $\operatorname{Sevens}(5832,1)=5877$, and Sevens $(5832,4)=77,777$. Show that Sevens is primitive recursive. You may use the $\operatorname{Digit}(x, y)$ function above as well as any of the primitive recursive functions from the lecture. Hint: using recursion is optional, but offers the most succinct solution.

Solution. Non-recursive solution.

$$
\operatorname{Sevens}(x, y)=\sum_{z \leq y} 7 \cdot 10^{z}+\sum_{z=y+1}^{x} \operatorname{Digit}(x, z) \cdot 10^{z}
$$

where $\sum_{z=y+1}^{x}$ is primitive recursive since

$$
\sum_{z=y+1}^{x}=\sum_{z=0}^{x}-\sum_{z \leq y}
$$

is the difference between two summations that both begin with index 0 .

Recursive Solution.

Base Case: $\operatorname{Sevens}(x, 0)=x-\operatorname{Digit}(x, 0)+7$.
Recursive Case: $\operatorname{Sevens}(x, y+1)=\operatorname{Sevens}(x, y)-\operatorname{Digit}(x, y+1) \cdot 10^{y+1}+7 \cdot 10^{y+1}$.

