CECS 329, Solutions to Learning Outcome Assessment 11, November 30th, Fall 2023, Dr. Ebert

Problems

LO7. Answer/solve the following.
(a) When universal program P_{U} simulates the computation $P_{x}(y)$, how is y used by P_{U} as part of the simulation?

Solution. P_{U} uses y to create the initial configuration of the computation of $P_{x}(y)$.
(b) A universal program P_{U} is simulating a program that has 93 instructions and whose Gödel number is

$$
x=2^{31}+2^{32}+2^{44}+2^{68}+2^{256}+\cdots+2^{c_{93}}-1 .
$$

If the current configuration of the computation of P_{x} on some input has encoding

$$
\sigma=2^{5}+2^{9}+2^{11}+2^{18}+2^{21}-1
$$

then provide the next configuration of the computation and its encoding.

Solution. We have

$$
c=\tau^{-1}(\sigma)=(5,3,1,6,2)
$$

Also, $\beta\left(I_{2}\right)=32-31-1=0$ and $0 \bmod 4=0$ implies that I_{2} is the Zero instruction $Z(1)$, since $0 / 4=0$. Thus,

$$
c_{\mathrm{next}}=(0,3,1,6,3)
$$

and

$$
\tau\left(c_{\text {next }}\right)=2^{0}+2^{4}+2^{6}+2^{13}+2^{17}-1
$$

LO8. Answer the following.
(a) Define what it means to be a positive instance of decision problem Self Accept. Hint: "Gödel number x is a positive instance of Self Accept iff _-_-.."

Solution. Gödel number x is a positive instance of Self Accept iff $P_{x}(x) \downarrow$, meaning P halts on its own Gödel number.
(b) The goal is to show that Self Accept is undecidable. We assume it is decidable by assuming that its characteristic function

$$
f(x)= \begin{cases}1 & \text { if } x \text { is a positive instance of Self Accept } \\ 0 & \text { if } x \text { is a negative instance of Self Accept }\end{cases}
$$

is total computable. Provide the definition for how to compute the "antagonist" function $g(x)$ based on the value of $f(x)$.

Solution. See Section 3.1 of the Undecidability and Diagonalization Method lecture.
(c) By writing the values of $g(0), g(1), \ldots$ in the appropriate table cells (next to the number in that cell), verify that function g is different from each computable function $\phi_{i}, i=0,1, \ldots$, Why does this create a contradiction?

Solution.

index \backslash input x	0	1	2	\cdots	i	\cdots	self accepting?
$\phi_{0}(x)$	$\uparrow \rightarrow 0$	12	7	\cdots	\uparrow	\cdots	no
$\phi_{1}(x)$	8	$87 \rightarrow \uparrow$	36	\cdots	96	\cdots	yes
$\phi_{2}(x)$	7	5	$0 \rightarrow \uparrow$	\cdots	\uparrow	\cdots	yes
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$\phi_{i}(x)$	0	32	65	\cdots	$\uparrow \rightarrow 0$	\cdots	no
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots

Function g is assumed computable yet, from the table, is different from each computable function, a contradiction. Conclusion: f's characteristic function is not total computable and so Self Accept is undecidable.

LO9. An instance of the decision problem Total is a Gödel number x, and the problem is to decide if program P_{x} halts on every input. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } P_{x} \text { halts on every input } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Evaluate $g(x)$ for each of the following Gödel number's x. Note: 2 out of 3 correct is considered passing. Justify your answers.
i. $x=e_{1}$, where e_{1} is the Gödel number of the program $P_{e_{1}}=S(1), S(1), T(1,2), J(1,2,2)$.

Hint: $T(i, j)$ means $R_{j} \leftarrow R_{i}$.
Solution. $g\left(e_{1}\right)=0$ since $P_{e_{1}}$ never halts on any input.
ii. $x=e_{2}$, where e_{2} is the Gödel number of the program $P_{e_{2}}=S(1), S(1), J(1,2,1)$.

Solution. $g\left(e_{2}\right)=1$ since $R_{1} \neq R_{2}$ when instruction $J(1,2,1)$ is executed.
iii. $x=e_{3}$, where e_{3} is the Gödel number of the program that computes $g(x)$ (assuming that $g(x)$ is URM computable).

Solution. $g\left(e_{3}\right)=1$ since g is assumed total computable.
(b) Prove that $g(x)$ is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 , depending on whether or not P_{x} halts on all inputs. Do this by writing a program P that uses g and makes use of the self programming concept. Then use a proof by cases to show that P creates a contradiction.

Solution.

Program P

Input y.
If $g($ self $)=1$, then loop forever.

Else return 0 .
Case 1: $g($ self $)=1$. Then P halts on all inputs, but P loops forever, a contradiction.
Case 2: $g($ self $)=0$. Then P should not halt on all inputs, yet, for each input y, P outputs 0 , a contradiction.

LO10. Solve the following.
(a) Provide the state diagram for a DFA M that accepts a binary word w ff either w has no 0 's, or every 0 of w is immediately followed by at least two consecutive 1's.

(b) Show the computation of M on inputs i) $w_{1}=10110111$ and ii) $w_{2}=01101101$.

LO11. Do the following for the NFA N whose state diagram is shown below.

(a) Provide a table that represents N 's δ transition function. Solution.

(b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.
Solution.

(c) Show the computation of M on input $w=11001$.

$\{a, c\}$
$\{a, c, d\}$
$\left\{a_{0}, 0 d\right\}\left\{\begin{array}{l}\left\{b_{0} c\right\} \\ \hline 11\end{array}\right.$

