Kleene's Second Recursion Theorem and Self-Knowing Programs

Last Updated April 6th, 2023

Kleene's Second Recursion Theorem

"Know Thyself"

Consider a computable function $f(x, y)$, where x is viewed as a Gödel number of some program and y is some other input. The following are some statements that could be made in an informal program that computes f.

- Print the instructions of P_{x}.
- Simulate the computation of P_{x} on input y.
- Count the number of Jump instructions that are executed in the computation of P_{x} on input y.
- Send program x and y to a server on the internet.
- Return the tuple of configurations that constitutes the computation of P_{x} on input y.

Now suppose we take f 's program statements and re-write them in a self-referencing way, to where we get statements like the following ones.

- Print my instructions.
- Simulate myself on input y.
- Count the number of Jump instructions that I execute when I'm computing input y.
- Send myself and y to a server on the internet.
- Return the tuple of configurations that constitutes my computation on input y.

A program that makes one or more references to its own Gödel number is said to be self-knowing or self-referencing.

Catch-22 for a Program P Attempting to Know Itself

1. For P to know its Gödel number, it must know each of its instructions.
2. Some instructions, such as "print myself", requires P to know its Gödel number.

Proposed Solution to Catch-22

1. Assume for the sake of argument that, after replacing statements about x with statements about itself, that there does in fact exist a program P_{e} with Gödel number e that computes the resulting function.
2. Then P_{e} is a function of the single variable y (since variable x has been assigned constant e).
3. Therefore, we have, for all y,

$$
\phi_{e}(y)=f(e, y) .
$$

In other words, there is a program P_{e} that, on input y computes $f(e, y)$, and thus makes references (to e that has been substituted for x) to its own Gödel number.
4. Thus, we have reduced the problem to that of finding a Gödel number e that satisfies the above equation.
5. Stephen Kleene's second recursion theorem states that such an e does exist!

Kleene's Second Recursion Theorem. Let $f(x, y)$ be a computable function that takes as input a Gödel number x, and some additional input y. Then there is a Gödel number e for which $\phi_{e}(y)=f(e, y)$.

Example 1. Consider the URM computable function $f(x, y)$ which, on inputs x and y, simulates the computation $P_{x}(y)$, and returns the number of times that a jump instruction is executed during the computation $P_{x}(y)$. Then by the 2 nd recursion theorem, there is a program P_{e} for which $P_{e}(y)=$ $f(e, y)$, and so, for input y, P_{e} computes the number of times that its own self executes a jump instruction during its computation with input y.

Proof of Kleene's Second Recursion Theorem. The idea behind the proof is to divide the construction of the desired program $P=A B C$ into three parts: A, B, and C which we now describe. Assume that y is the input to P.

Part A. Move y to register R_{2}.

\checkmark Compute

$$
\text { e) }=\gamma\left(\underline{\gamma}^{-1}(a), \gamma^{-1}(b) \gamma^{-1}(c)\right)=\gamma(\underline{A B C}) \neq \gamma(\underline{P})
$$

the Gödel number of the concatenation of A 's, B 's, and C 's instructions.

Part C. Compute $f(e, y)$.

Notes.

1. The most straightforward of the three is part C, since its sole purpose is to compute function f which is assumed URM computable, and so C 's instructions consist of the instructions of the URM program used to compute f.
2. The clever part of the above program is understanding how A is able to compute B 's Gödel number and vice versa. This is actually made possible by an elementary use of the s-m-n theorem.
3. Consider the function $g(x, y)=x$. By the s-m-n theorem, there is a total computable function $k(x)$ for which

$$
\phi_{k(x)}(y)=g(x, y)=x .
$$

4. Then define A 's Gödel number to be equal to $k(b)$. This works because, on input y, program A outputs

$$
\phi_{k(b)}(y)=b
$$

in register R_{1}, and has the side effect of placing y in R_{2} via an initial $T(1,2)$ statement. Therefore A works in exactly the way it was described above.

Given that $a=k(b)$ we may now describe B 's program as follows.

Program B

Input Gödel number z.
Compute Gödel number $k(z)$.
Compute $c=\gamma(C)$.
Return

$$
\gamma\left(\gamma^{-1}(k(z)), \gamma^{-1}(z), c\right) .
$$

Important: notice that B 's program does not depend on knowing A 's Gödel number a. If it did, then it would create a circularity error, since $a=k(b)$ already depends on B 's Gödel number. However, B is able to compute a once it has its own Gödel number $z=b$ since step 2 of its algorithm yields $a=k(b)$.

Thus, we see that, after the execution of A on input y, B receives input $z=b$ which gives $a=k(z)=$ $k(b)$, and so B outputs into R_{1} the value

$$
e=\gamma\left(\gamma^{-1}(a), \gamma^{-1}(b), \gamma^{-1}(c)\right)=\gamma(A B C)=\gamma(P)
$$

The following diagram shows the results of all three programs combined in sequence, where $v \xrightarrow{X} w$ means that program X inputs v and outputs w. Then we have

$$
y \xrightarrow{A}(b, y) \xrightarrow{B}(e=\gamma(A B C), y) \xrightarrow{C} f(e=\gamma(A B C), y) .
$$

Therefore, $P=A B C=P_{e}$ computes

$$
\phi_{e}(y)=f(e, y)
$$

and the proof is complete.

Example 2. Program P is called totally introspective iff, on input y, P returns a number that encodes every configuration of the computation of P on input y. Letting $\sigma(x, y, i)$ denote the encoding of the i th configuration of the computation $P_{x}(y)$, then we define the computable function

$$
f(x, y)= \begin{cases}\prod_{i \leq t} p_{i}^{\sigma(x, y, i)} & \text { if } P_{x}(y) \downarrow \text { in } t \text { steps } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Now, by the 2 nd recursion theorem, there exists a Gödel number e for which $\phi_{e}(y)=f(e, y)$, meaning that P_{e} is totally introspective, since, on input y, it outputs an encoding of all the configurations used in the computation $P_{e}(y)$.

The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P. Namely, we may make reference to P 's Gödel number, which is represented with the keyword self. This keyword is similar to the this keyword of Java, which refers to the object that a Java method is acting on. For example, the following are valid programming statements for program P :

```
int f(int y)
{
    int length = self.instructions.length;
    print("Hi! I have Godel number equal to ");
    print(self);
    print(".\nI have ");
    print(length);
    print(" instructions.\nI will return the square of the output that results ");
    print("from simulating myself on input y.\n");
    print("What are the possibilities for the output value?\n");
    length = simulate(self,y);
    return length*length;
}
```

To justify such a program, suppose $y \in \mathcal{N}$ is the input to P, and the purpose of P is to implement the unary computable function $f(y)$. Then we may do the following.

1. Transform P by adding another input x, so that we are now implementing function $f(x, y)$.
2. Replace each occurrence of self with x.
3. Use the method described in the proof of Kleene's 2nd Recursion Theorem to compute an e for which P_{e} computes

$$
\phi_{e}(y)=f(e, y) .
$$

4. Therefore, P_{e} computes $f(y)$, with e substituted for x.
5. Therefore, P_{e} 's references to self are justified, since self $=e$, the Gödel number of the program that computes $f(y)$.

Kleene's 2nd Recursion Theorem and Undecidability

Recall that a predicate function p is decidable iff there is some URM program that is capable of computing p. Otherwise, we say that p is undecidable.

Example 3. Let x and y be the encodings of two DFA's M_{x} and M_{y} and let predicate EQ_DFA $(x, y)=$ 1 iff $L\left(M_{x}\right)=L\left(M_{y}\right)$, i.e. M_{x} and M_{y} accept the same set of words. Then EQ_DFA (x, y) is decidable via the following algorithm that is outlined below.
I. Compute the DFA M that accepts the language

$$
L\left(M_{x}\right) \oplus L\left(M_{y}\right)=\left(L\left(M_{x}\right) \cap \overline{L\left(M_{y}\right)}\right) \cup\left(L\left(M_{y}\right) \cap \overline{L\left(M_{x}\right)}\right) .
$$

This can be done using both the Intersection Algorithm and the algorithm for computing an NFA that accepts the union of two languages (and then converting the NFA to a DFA).
II. We have $L\left(M_{x}\right)=L\left(M_{y}\right)$ iff $L\left(M_{x}\right) \oplus L\left(M_{y}\right)=\emptyset$ (why?).
III. Thus, we need only check if the initial state of M can reach any of its accepting states along some path in the state diagram. Then $L\left(M_{x}\right)=L\left(M_{y}\right)$ iff there is no path from the initial state to an accepting state.

We state the following Theorem without proof (See Chapter 4 of Sipser).
Theorem 2. Let x and y be the encodings of two CFG's G_{x} and G_{y} and let predicate EQ_CFG $(x, y)=$ 1 iff $L\left(G_{x}\right)=L\left(G_{y}\right)$, i.e. G_{x} and G_{y} derive the same set of words. Then EQ_CFG (x, y) is undecidable.

Now consider a predicate function $p(x)$ that outputs a 1 iff the URM program having Gödel number x has some property. Then Kleene's 2 nd Recursion theorem can be used to show that p is undecidable. To accomplish this we use the following strategy.

1. Assume p decidable.
2. Define a program P which, on input y, first computes p (self).
3. If $p($ self $)=1$, then P proceeds to act in a contradicting way so that it is necessary for $p(\gamma(P))=$ 0 .
4. If $p($ self $)=0$, then P proceeds to act in a contradicting way so that it is necessary for $p(\gamma(P))=$ 1.
5. From 3 and 4, we must conclude that p is undecidable.

Theorem 3. The Halting Problem is the problem of deciding whether or not the program whose Gödel number is x halts on input y. Let $H(x, y)$ be the predicate function for which $H(x, y)=1$ iff $P_{x}(y) \downarrow$. Then H is undecidable. Equivalently, $H(x, y)=1$ iff $y \in W_{x}$. is undecidable.

Example 4. Provide a program P_{1} for which $H\left(\gamma\left(P_{1}\right), 1\right)=1$, and a P_{2} for which $H\left(\gamma\left(P_{2}\right), 1\right)=0$.

Proof of Theorem 3. We assume the Halting Problem is decidable, i.e.

$$
H(x, y)= \begin{cases}1 & \text { if } y \in W_{x} \\ 0 & \text { otherwise }\end{cases}
$$

is total computable. Now consider the following program P.

Input $y \in \mathcal{N}$.
If H (self, y), loop forever.
Return 1.

Let $e=$ self denote the Gödel number for P. Then $P_{e}(e)=1$ provided $H(e, e)=0$ iff $P_{e}(e)$ does not halt, a contradiction. Similarly, $P_{e}(e)$ does not halt provided $H(e, e)=1$ iff $P_{e}(e)$ does halt, another contradiction. Therefore, the assumption that H is decidable must be false.

Example 5. Prove that the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x} \text { is total } \\ 0 & \text { otherwise }\end{cases}
$$

is undecidable. First give examples of programs P_{1} and P_{2} for which $g\left(\gamma\left(P_{1}\right)\right)=1$ and $g\left(\gamma\left(P_{2}\right)\right)=0$.

Other Applications of Kleene's 2nd Recursion Theorem

Theorem 4. Consider the set M, where $x \in M$ iff there is no $y<x$ for which $\phi_{y}=\phi_{x}$. In other words, P_{x} is a minimal program for function ϕ_{x}. Then M is not recursively enumerable.

Proof of Theorem 3. Suppose M is recursively enumerable. Then it is an exercise to show that there is a total computable unary function f whose range is equal to M. In other words $M=\{f(i) \mid i \in \mathcal{N}\}$. Consider the following program P.

Input $x \in \mathcal{N}$.
For each $i=0,1, \ldots$
If $f(i)>$ self, then break.
Simulate program $P_{f(i)}$ on input x, and return y in case $P_{f(i)}(x) \downarrow y$.

Let e be the Gödel number of P. Then it follows that $\phi_{e}=\phi_{f(i)}$. But $f(i)>e$ which contradicts the fact that $f(i) \in M$. Therefore, the assumption that M is r.e. must be false.

Theorem 5. Let f be a total computable unary function. Then there is a number $n \in \mathcal{N}$ for which $\phi_{n}=\phi_{f(n)}$. We refer to n as a fixed point for f.

Proof of Theorem 4. Consider the following program P.

Input $x \in \mathcal{N}$.
Compute $y=f($ self $)$.
Simulate program P_{y} on input x, and return z in case $P_{y}(x) \downarrow z$.

Then

$$
\phi_{y}=\phi_{f(\text { self })}=\phi_{\text {self }},
$$

and so $n=$ self is a fixed point for f.

Exercises

1. With respect to Kleene's 2nd Recursion Theorem, prove that there are infinitely many values e for which $\phi_{e}(y)=f(e, y)$. Hint: consider program B in the proof of the theorem.
2. Recall that a function $f: \mathcal{N} \rightarrow \mathcal{N}$ is onto provided for every $y \in \mathcal{N}$ there is an $x \in \mathcal{N}$ for which $f(x)=y$. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x} \text { is onto } \\ 0 & \text { otherwise }\end{cases}
$$

Evaluate $g(a), g(b)$, and $g(c)$, where
(a) $\phi_{a}(y)=y^{2}$
(b) $\phi_{b}(y)=1$
(c) $\phi_{c}(y)=y$.
3. Prove that the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x} \text { is onto } \\ 0 & \text { otherwise }\end{cases}
$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_{x} is onto. Do this by writing a program P that uses g and makes use of the self programming concept.
4. Recall that W_{x} denotes the domain of the function $\phi_{x}(y)$, i.e. the natural number inputs y to ϕ_{x} for which $\phi_{x}(y)$ is defined. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } W_{x}=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Evaluate $g(a), g(b)$, and $g(c)$, where
(a) $P_{a}=S(2), S(2), S(1), J(1,2,6), J(1,1,3)$
(b) $P_{b}=S(2), J(2,3,3), J(1,1,1)$
(c) $P_{c}=S(1), S(1), S(2), J(1,2,6), J(1,1,1)$
5. Prove that the function

$$
g(x)= \begin{cases}1 & \text { if } W_{x}=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_{x} has an empty domain. Do this by writing a program P that uses g and makes use of the self programming concept. Then show how P creates a contradiction.
6. Consider the function

$$
g(x)= \begin{cases}1 & \text { if }\left|E_{x}\right|=\infty \\ 0 & \text { otherwise }\end{cases}
$$

In other words $g(x)=1$ iff function $\phi_{x}(y)$ has an infinite range, meaning that it outputs an infinite number of different values. Evaluate $g(a), g(b)$, and $g(c)$, where
(a) $\phi_{a}(y)=y^{2}$
(b) $\phi_{b}(y)=y$
(c) $\phi_{c}(y)=\operatorname{sgn}(y)$.
7. Prove that the function

$$
g(x)= \begin{cases}1 & \text { if }\left|E_{x}\right|=\infty \\ 0 & \text { otherwise }\end{cases}
$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_{x} has an infinite range. Do this by writing a program P that uses g and makes use of the self programming concept. Then show how P creates a contradiction.
8. Rice's theorem states that if \mathcal{C}_{1} denotes the set of unary computable functions, and \mathcal{B} is a nonempty proper subset of \mathcal{C}_{1}, then the predicate function

$$
B(x)= \begin{cases}1 & \text { if } \phi_{x} \in \mathcal{B} \\ 0 & \text { otherwise }\end{cases}
$$

is undecidable. Prove Rice's theorem by writing an informal program P that uses $B(x)$ and makes use of the self programming concept. Then show how P creates a contradiction. Hint: assume $B(x)$ is decidable, and take advantage of the fact that the set of functions \mathcal{B} is both nonempty and not all of \mathcal{C}_{1}.
9. For each constant $n \geq 1$, show that $\left\lfloor x^{1 / n}\right\rfloor$ is a primitive-recursive function of x.
10. Prove that there exists an n for which $\phi_{n}(x)=\left\lfloor x^{1 / n}\right\rfloor$. Hint: use the s-m-n theorem and Theorem 4.
11. Recall that program P_{x} has the self-output property iff $x \in E_{x}$. By writing an informal program that makes use of the programming construct self, prove that the self-output property is undecidable.
12. Show that there is a number e for which $\phi_{e}(x)=e^{10}$, for all $x \in \mathcal{N}$.
13. Consider the following description of a function $f(n)$. On input n, return the Gödel number of the program P^{\prime} that is the result of appending program P_{n} with a minimum number of successor instructions $S(1), \ldots, S(1)$ so that it is always guaranteed that, should P_{n} halt on an input, then the final instruction of P^{\prime} will be one of these successor instructions. Then by the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for $f(n)$, i.e. $\phi_{n}=\phi_{f(n)}$, then necessarily $\phi_{n}(x)$ is undefined for all x.

Exercise Solutions

1. Since the proof of Kleene's 2nd Recursion Theorem constructs e as $e=\gamma(A B C)$, by changing the instructions of B, we get a new value for e, since B has changed. We only have to make sure that B 's instructions are changed in a trivial way that does not affect its functionality as described in the proof.
2. A function $\phi_{x}(y)$ is onto iff $E_{x}=\mathcal{N}$, where E_{x} denotes the range of ϕ_{x}. Thus,
(a) $g(a)=0$ since $\phi_{a}(y)=y^{2}$ is not onto since $E_{a}=\{1,4,9,25, \ldots\} \neq \mathcal{N}$,
(b) $g(b)=0$ since $\phi_{b}(y)=1$ is not onto since $E_{b}=\{1\} \neq \mathcal{N}$, and
(c) $g(c)=1$ since $\phi_{c}(y)=y$ is onto since $E_{c}=\mathcal{N}$.
3. We have the following program P.

Input $y \in \mathcal{N}$.
If $g($ self $)=1$, loop forever.
Return y;
If $g(\operatorname{self})=1$, then P has a range equal to \mathcal{N} which is impossible since it does not terminate on any input (loops forever). If $g($ self $)=0$, then P does not have a range equal to \mathcal{N}, which is contradicted by the fact that P returns y on input y, and so has the set of return values $\{0,1, \ldots\}=\mathcal{N}$.
4. We have the following answers.
(a) $g(a)=0$ since P_{a} terminates on input 1 (verify!) and thus $W_{a}=\{1\} \neq \emptyset$.
(b) $g(b)=1$ since P_{b} does not terminate on any input (why?) and thus $W_{b}=\emptyset$.
(c) $g(c)=1$ since P_{c} does not terminate on any input (why?) and thus $W_{c}=\emptyset$.
5. We have the following program P.

Input $y \in \mathcal{N}$.
If $g($ self $)=1$, Return 0 .
Loop Forever.
If $g(\operatorname{self})=1$, then it means $W_{\text {self }}=\emptyset$, but P returns 0 for each input y, which implies $W_{\text {self }}=\mathcal{N}$, a contradiction.
If $g($ self $)=0$, then it means $W_{\text {self }} \neq \emptyset$, but P loops forever on each input y, which implies $W_{\text {self }}=\emptyset$, a contradiction.
6. We have the following answers.
(a) $g(a)=1$ since $\phi_{a}(y)=y^{2}$ has an infinite range: $E_{a}=\{1,4,9,25, \ldots\}$,
(b) $g(b)=1$ since $\phi_{b}(y)=y$ has an infinite range $E_{b}=\mathcal{N}$, and
(c) $g(c)=0$ since $\phi_{c}(y)=\operatorname{sgn}(y)$ has finite range equal to $\{0,1\}$.
7. Consider the following program P.

Input $y \in \mathcal{N}$.
If $g($ self $)=1$, Return 0 .
Return y.

If $g(\operatorname{self})=1$, then it means $\left|E_{\text {self }}\right|=\infty$, but the program returns 0 for each input y, which implies $E_{\text {self }}=\{0\}$ which is finite, a contradiction.
If $g(\operatorname{self})=0$, then it means $\left|E_{\text {self }}\right|$ is finite, but the program returns y on each input y, which implies $E_{\text {self }}=\mathcal{N}$, a contradiction.
8. Assume $B(x)$ is decidable. Since \mathcal{B} is nonempty there exists a unary computable function $f \in \mathcal{B}$. Similarly, since \mathcal{B} is not all of \mathcal{C}_{1}, there is a unary computable function $g \notin \mathcal{B}$. Now consider the following program P.

Input $x \in \mathcal{N}$.
If $B($ self $)=1$,
Simulate g on input x.
Return $g(x)$ if it is defined.
Simulate f on input x.
Return $f(x)$ if it is defined.
Since f and g are computable, so is P. Let e denote the Gödel number of P. Assume $B(e)=1$. By definition, this means that $\phi_{e} \in \mathcal{B}$. But in examining P we see that P simulates g so that $\phi_{e}=g \notin \mathcal{B}$, a contradiction. Similarly, if $B(e)=0$, then $\phi_{e} \notin \mathcal{B}$. But in this case P simulates f so that $\phi_{e}=f \in \mathcal{B}$, a contradiction. Therefore, B cannot be decidable.
9. The function $\left\lfloor x^{1 / n}\right\rfloor$ may be computed as

$$
\mu(z \leq x)\left(z^{n}>x\right)-1
$$

10. Function $f(n, x)=\left\lfloor x^{1 / n}\right\rfloor$ is computable by the previous exercise. Therefore, by the s-m-n theorem, there exists a total computable function $k(n)$ for which $\phi_{k(n)}(x)=\left\lfloor x^{1 / n}\right\rfloor$. Finally, by Theorem 4, there is an integer n for which

$$
\phi_{n}(x)=\phi_{k(n)}(x)=\left\lfloor x^{1 / n}\right\rfloor .
$$

11. Assume $E(x)$ is decidable, where $E(x)=1$ iff $x \in E_{x}$. Now consider the following program P.

Input $x \in \mathcal{N}$.
If $E($ self $)=1$,
Loop forever.
Return self.
Since $E(x)$ is decidable, P is computable. Let e denote the Gödel number of P. Assume $E(e)=1$. By definition, this means that $e \in E_{e}$, meaning that P returns e on some input x. However, since $E(e)=1, P$ does not terminate on any input, meaning that $E_{e}=\emptyset$, a contradiction.

Similarly, if $E(e)=0$, then $e \notin E_{e}$. But in this case P returns e, meaning that $e \in E_{e}$, a contradiction. Therefore, $E(x)$, i.e. the Self-Output property, is not decidable.
12. Function $f(y, x)=y^{10}$ is primitive recursive, and hence computable. Therefore, by the s-m-n theorem, there exists a total computable function $k(y)$ for which $\phi_{k(y)}(x)=y^{10}$. Finally, by Theorem 4, there is an integer e for which

$$
\phi_{e}(x)=\phi_{k(e)}(x)=e^{10}
$$

for all $x \in \mathcal{N}$.
13. Since $f(n)$ is total computable, by Theorem 4 there is an integer n for which $\phi_{n}(x)=\phi_{f(n)}(x)$ for all $x \in \mathcal{N}$. But the way in which Gödel number $f(n)$ is constructed is such that, whenever $\phi_{n}(x)=y$ is true, then P_{n} halts, which in turn implies that $P_{f(n)}$ halts with $\phi_{f(n)}(x)=y+1$, since $P_{f(n)}$ is the same as P_{n}, except that in its final instruction it adds 1 to register R_{1}. Thus, if $\phi_{n}(x)$ is defined, then we have $\phi_{n}(x)=y \neq \phi_{f(n)}(x)=y+1$. Therefore, we must conclude that $\phi_{n}(x)$ must always be undefined, meaning that $W_{n}=\emptyset$.

