# Kleene's Second Recursion Theorem and Self-Knowing Programs

Last Updated April 6th, 2023

### Kleene's Second Recursion Theorem

"Know Thyself"

Socrates

Consider a computable function f(x, y), where x is viewed as a Gödel number of some program and y is some other input. The following are some statements that could be made in an informal program that computes f.

- Print the instructions of  $P_x$ .
- Simulate the computation of  $P_x$  on input y.
- Count the number of Jump instructions that are executed in the computation of  $P_x$  on input y.
- Send program x and y to a server on the internet.
- Return the tuple of configurations that constitutes the computation of  $P_x$  on input y.

Now suppose we take f's program statements and re-write them in a self-referencing way, to where we get statements like the following ones.

- Print *my* instructions.
- Simulate *myself* on input *y*.
- Count the number of Jump instructions that I execute when I'm computing input y.
- Send *myself* and *y* to a server on the internet.
- Return the tuple of configurations that constitutes my computation on input y.

A program that makes one or more references to its own Gödel number is said to be **self-knowing** or **self-referencing**.

#### Catch-22 for a Program P Attempting to Know Itself

- 1. For P to know its Gödel number, it must know each of its instructions.
- 2. Some instructions, such as "print myself", requires P to know its Gödel number.

#### Proposed Solution to Catch-22

- 1. Assume for the sake of argument that, after replacing statements about x with statements about itself, that there does in fact exist a program  $P_e$  with Gödel number e that computes the resulting function.
- 2. Then  $P_e$  is a function of the single variable y (since variable x has been assigned constant e).
- 3. Therefore, we have, for all y,

$$\phi_e(y) = f(e, y).$$

In other words, there is a program  $P_e$  that, on input y computes f(e, y), and thus makes references (to e that has been substituted for x) to its own Gödel number.

- 4. Thus, we have reduced the problem to that of finding a Gödel number e that satisfies the above equation.
- 5. Stephen Kleene's second recursion theorem states that such an e does exist!

Kleene's Second Recursion Theorem. Let f(x, y) be a computable function that takes as input a Gödel number x, and some additional input y. Then there is a Gödel number e for which  $\phi_e(y) = f(e, y)$ .

**Example 1.** Consider the URM computable function f(x, y) which, on inputs x and y, simulates the computation  $P_x(y)$ , and returns the number of times that a jump instruction is executed during the computation  $P_x(y)$ . Then by the 2nd recursion theorem, there is a program  $P_e$  for which  $P_e(y) = f(e, y)$ , and so, for input y,  $P_e$  computes the number of times that its own self executes a jump instruction during its computation with input y.

**Proof of Kleene's Second Recursion Theorem.** The idea behind the proof is to divide the construction of the desired program P = ABC into three parts: A, B, and C which we now describe. Assume that y is the input to P.



- 1. The most straightforward of the three is part C, since its sole purpose is to compute function f which is assumed URM computable, and so C's instructions consist of the instructions of the URM program used to compute f.
- 2. The clever part of the above program is understanding how A is able to compute B's Gödel number and vice versa. This is actually made possible by an elementary use of the s-m-n theorem.
- 3. Consider the function g(x, y) = x. By the s-m-n theorem, there is a total computable function k(x) for which

$$\phi_{k(x)}(y) = g(x, y) = x.$$

4. Then define A's Gödel number to be equal to k(b). This works because, on input y, program A outputs

$$\phi_{k(b)}(y) = b$$

in register  $R_1$ , and has the side effect of placing y in  $R_2$  via an initial T(1,2) statement. Therefore A works in exactly the way it was described above. Given that a = k(b) we may now describe B's program as follows.

#### **Program** B

Input Gödel number z.

Compute Gödel number k(z).

Compute  $c = \gamma(C)$ .

Return

$$\gamma(\gamma^{-1}(k(z)), \gamma^{-1}(z), c).$$

**Important:** notice that B's program does not depend on knowing A's Gödel number a. If it did, then it would create a circularity error, since a = k(b) already depends on B's Gödel number. However, B is able to compute a once it has its own Gödel number z = b since step 2 of its algorithm yields a = k(b).

Thus, we see that, after the execution of A on input y, B receives input z = b which gives a = k(z) = k(b), and so B outputs into  $R_1$  the value

$$e = \gamma(\gamma^{-1}(a), \gamma^{-1}(b), \gamma^{-1}(c)) = \gamma(ABC) = \gamma(P).$$

The following diagram shows the results of all three programs combined in sequence, where  $v \xrightarrow{X} w$  means that program X inputs v and outputs w. Then we have

$$y \xrightarrow{A} (b, y) \xrightarrow{B} (e = \gamma(ABC), y) \xrightarrow{C} f(e = \gamma(ABC), y).$$

Therefore,  $P = ABC = P_e$  computes

$$\phi_e(y) = f(e, y),$$

and the proof is complete.

**Example 2.** Program P is called **totally introspective** iff, on input y, P returns a number that encodes every configuration of the computation of P on input y. Letting  $\sigma(x, y, i)$  denote the encoding of the i th configuration of the computation  $P_x(y)$ , then we define the computable function

$$f(x,y) = \begin{cases} \prod_{i \le t} p_i^{\sigma(x,y,i)} & \text{if } P_x(y) \downarrow \text{ in } t \text{ steps} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Now, by the 2nd recursion theorem, there exists a Gödel number e for which  $\phi_e(y) = f(e, y)$ , meaning that  $P_e$  is totally introspective, since, on input y, it outputs an encoding of all the configurations used in the computation  $P_e(y)$ .

### The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P. Namely, we may make reference to P's Gödel number, which is represented with the keyword self. This keyword is similar to the **this** keyword of Java, which refers to the object that a Java method is acting on. For example, the following are valid programming statements for program P:

```
int f(int y)
{
    int length = self.instructions.length;
    print("Hi! I have Godel number equal to ");
    print(self);
    print(".\nI have ");
    print(length);
    print(length);
    print(" instructions.\nI will return the square of the output that results ");
    print("from simulating myself on input y.\n");
    print("What are the possibilities for the output value?\n");
    length = simulate(self,y);
    return length*length;
}
```

To justify such a program, suppose  $y \in \mathcal{N}$  is the input to P, and the purpose of P is to implement the unary computable function f(y). Then we may do the following.

- 1. Transform P by adding another input x, so that we are now implementing function f(x, y).
- 2. Replace each occurrence of self with x.
- 3. Use the method described in the proof of Kleene's 2nd Recursion Theorem to compute an e for which  $P_e$  computes

$$\phi_e(y) = f(e, y).$$

- 4. Therefore,  $P_e$  computes f(y), with e substituted for x.
- 5. Therefore,  $P_e$ 's references to self are justified, since self = e, the Gödel number of the program that computes f(y).

### Kleene's 2nd Recursion Theorem and Undecidability

Recall that a predicate function p is **decidable** iff there is some URM program that is capable of computing p. Otherwise, we say that p is **undecidable**.

**Example 3.** Let x and y be the encodings of two DFA's  $M_x$  and  $M_y$  and let predicate EQ\_DFA(x, y) = 1 iff  $L(M_x) = L(M_y)$ , i.e.  $M_x$  and  $M_y$  accept the same set of words. Then EQ\_DFA(x, y) is decidable via the following algorithm that is outlined below.

I. Compute the DFA M that accepts the language

$$L(M_x) \oplus L(M_y) = (L(M_x) \cap L(M_y)) \cup (L(M_y) \cap L(M_x)).$$

This can be done using both the Intersection Algorithm and the algorithm for computing an NFA that accepts the union of two languages (and then converting the NFA to a DFA).

- II. We have  $L(M_x) = L(M_y)$  iff  $L(M_x) \oplus L(M_y) = \emptyset$  (why?).
- III. Thus, we need only check if the initial state of M can reach any of its accepting states along some path in the state diagram. Then  $L(M_x) = L(M_y)$  iff there is no path from the initial state to an accepting state.

We state the following Theorem without proof (See Chapter 4 of Sipser).

**Theorem 2.** Let x and y be the encodings of two CFG's  $G_x$  and  $G_y$  and let predicate EQ\_CFG(x, y) = 1 iff  $L(G_x) = L(G_y)$ , i.e.  $G_x$  and  $G_y$  derive the same set of words. Then EQ\_CFG(x, y) is undecidable.

Now consider a predicate function p(x) that outputs a 1 iff the URM program having Gödel number x has some property. Then Kleene's 2nd Recursion theorem can be used to show that p is undecidable. To accomplish this we use the following strategy.

- 1. Assume p decidable.
- 2. Define a program P which, on input y, first computes p(self).
- 3. If p(self) = 1, then P proceeds to act in a contradicting way so that it is necessary for  $p(\gamma(P)) = 0$ .
- 4. If p(self) = 0, then P proceeds to act in a contradicting way so that it is necessary for  $p(\gamma(P)) = 1$ .
- 5. From 3 and 4, we must conclude that p is undecidable.

**Theorem 3.** The Halting Problem is the problem of deciding whether or not the program whose Gödel number is x halts on input y. Let H(x, y) be the predicate function for which H(x, y) = 1 iff  $P_x(y) \downarrow$ . Then H is undecidable. Equivalently, H(x, y) = 1 iff  $y \in W_x$ . is undecidable.

**Example 4.** Provide a program  $P_1$  for which  $H(\gamma(P_1), 1) = 1$ , and a  $P_2$  for which  $H(\gamma(P_2), 1) = 0$ .

Proof of Theorem 3. We assume the Halting Problem is decidable, i.e.

$$H(x,y) = \begin{cases} 1 & \text{if } y \in W_x \\ 0 & \text{otherwise} \end{cases}$$

is total computable. Now consider the following program P.

Input  $y \in \mathcal{N}$ . If H(self, y), loop forever. Return 1.

Let e = self denote the Gödel number for P. Then  $P_e(e) = 1$  provided H(e, e) = 0 iff  $P_e(e)$  does not halt, a contradiction. Similarly,  $P_e(e)$  does not halt provided H(e, e) = 1 iff  $P_e(e)$  does halt, another contradiction. Therefore, the assumption that H is decidable must be false.

**Example 5.** Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is total} \\ 0 & \text{otherwise} \end{cases}$$

is undecidable. First give examples of programs  $P_1$  and  $P_2$  for which  $g(\gamma(P_1)) = 1$  and  $g(\gamma(P_2)) = 0$ .

## Other Applications of Kleene's 2nd Recursion Theorem

**Theorem 4.** Consider the set M, where  $x \in M$  iff there is no y < x for which  $\phi_y = \phi_x$ . In other words,  $P_x$  is a minimal program for function  $\phi_x$ . Then M is not recursively enumerable.

**Proof of Theorem 3.** Suppose M is recursively enumerable. Then it is an exercise to show that there is a total computable unary function f whose range is equal to M. In other words  $M = \{f(i) | i \in \mathcal{N}\}$ . Consider the following program P.

Input  $x \in \mathcal{N}$ .

For each i = 0, 1, ...

If f(i) >self, then break.

Simulate program  $P_{f(i)}$  on input x, and return y in case  $P_{f(i)}(x) \downarrow y$ .

Let e be the Gödel number of P. Then it follows that  $\phi_e = \phi_{f(i)}$ . But f(i) > e which contradicts the fact that  $f(i) \in M$ . Therefore, the assumption that M is r.e. must be false.

**Theorem 5.** Let f be a total computable unary function. Then there is a number  $n \in \mathcal{N}$  for which  $\phi_n = \phi_{f(n)}$ . We refer to n as a **fixed point** for f.

**Proof of Theorem 4.** Consider the following program *P*.

Input  $x \in \mathcal{N}$ .

Compute y = f(self).

Simulate program  $P_y$  on input x, and return z in case  $P_y(x) \downarrow z$ .

Then

$$\phi_y = \phi_{f(\texttt{self})} = \phi_{\texttt{self}},$$

and so n =self is a fixed point for f.

### Exercises

- 1. With respect to Kleene's 2nd Recursion Theorem, prove that there are infinitely many values e for which  $\phi_e(y) = f(e, y)$ . Hint: consider program B in the proof of the theorem.
- 2. Recall that a function  $f : \mathcal{N} \to \mathcal{N}$  is **onto** provided for every  $y \in \mathcal{N}$  there is an  $x \in \mathcal{N}$  for which f(x) = y. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is onto} \\ 0 & \text{otherwise} \end{cases}$$

Evaluate g(a), g(b), and g(c), where

- (a)  $\phi_a(y) = y^2$
- (b)  $\phi_b(y) = 1$
- (c)  $\phi_c(y) = y$ .
- 3. Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is onto} \\ 0 & \text{otherwise} \end{cases}$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not  $\phi_x$  is onto. Do this by writing a program P that uses g and makes use of the **self** programming concept.

4. Recall that  $W_x$  denotes the domain of the function  $\phi_x(y)$ , i.e. the natural number inputs y to  $\phi_x$  for which  $\phi_x(y)$  is defined. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } W_x = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Evaluate g(a), g(b), and g(c), where

- (a)  $P_a = S(2), S(2), S(1), J(1, 2, 6), J(1, 1, 3)$
- (b)  $P_b = S(2), J(2,3,3), J(1,1,1)$
- (c)  $P_c = S(1), S(1), S(2), J(1, 2, 6), J(1, 1, 1)$
- 5. Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } W_x = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not  $\phi_x$  has an empty domain. Do this by writing a program P that uses g and makes use of the **self** programming concept. Then show how P creates a contradiction.

6. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } |E_x| = \infty \\ 0 & \text{otherwise} \end{cases}$$

In other words g(x) = 1 iff function  $\phi_x(y)$  has an infinite range, meaning that it outputs an infinite number of different values. Evaluate g(a), g(b), and g(c), where

- (a)  $\phi_a(y) = y^2$ (b)  $\phi_b(y) = y$ (c)  $\phi_c(y) = \text{sgn}(y).$
- 7. Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } |E_x| = \infty \\ 0 & \text{otherwise} \end{cases}$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not  $\phi_x$  has an infinite range. Do this by writing a program P that uses g and makes use of the **self** programming concept. Then show how P creates a contradiction.

8. Rice's theorem states that if  $C_1$  denotes the set of unary computable functions, and  $\mathcal{B}$  is a nonempty proper subset of  $C_1$ , then the predicate function

$$B(x) = \begin{cases} 1 & \text{if } \phi_x \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$

is undecidable. Prove Rice's theorem by writing an informal program P that uses B(x) and makes use of the **self** programming concept. Then show how P creates a contradiction. Hint: assume B(x) is decidable, and take advantage of the fact that the set of functions  $\mathcal{B}$  is both nonempty and not all of  $\mathcal{C}_1$ .

- 9. For each constant  $n \ge 1$ , show that  $\lfloor x^{1/n} \rfloor$  is a primitive-recursive function of x.
- 10. Prove that there exists an n for which  $\phi_n(x) = \lfloor x^{1/n} \rfloor$ . Hint: use the s-m-n theorem and Theorem 4.
- 11. Recall that program  $P_x$  has the self-output property iff  $x \in E_x$ . By writing an informal program that makes use of the programming construct **self**, prove that the self-output property is undecidable.
- 12. Show that there is a number e for which  $\phi_e(x) = e^{10}$ , for all  $x \in \mathcal{N}$ .
- 13. Consider the following description of a function f(n). On input n, return the Gödel number of the program P' that is the result of appending program  $P_n$  with a minimum number of successor instructions  $S(1), \ldots, S(1)$  so that it is always guaranteed that, should  $P_n$  halt on an input, then the final instruction of P' will be one of these successor instructions. Then by the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for f(n), i.e.  $\phi_n = \phi_{f(n)}$ , then necessarily  $\phi_n(x)$  is undefined for all x.

### **Exercise Solutions**

1. Since the proof of Kleene's 2nd Recursion Theorem constructs e as  $e = \gamma(ABC)$ , by changing the instructions of B, we get a new value for e, since B has changed. We only have to make sure that B's instructions are changed in a trivial way that does not affect its functionality as described in the proof.

- 2. A function  $\phi_x(y)$  is onto iff  $E_x = \mathcal{N}$ , where  $E_x$  denotes the range of  $\phi_x$ . Thus,
  - (a) g(a) = 0 since  $\phi_a(y) = y^2$  is not onto since  $E_a = \{1, 4, 9, 25, \ldots\} \neq \mathcal{N}$ ,
  - (b) g(b) = 0 since  $\phi_b(y) = 1$  is not onto since  $E_b = \{1\} \neq \mathcal{N}$ , and
  - (c) g(c) = 1 since  $\phi_c(y) = y$  is onto since  $E_c = \mathcal{N}$ .
- 3. We have the following program P.

```
Input y \in \mathcal{N}.
If g(\texttt{self}) = 1, loop forever.
Return y;
```

If g(self) = 1, then P has a range equal to  $\mathcal{N}$  which is impossible since it does not terminate on any input (loops forever). If g(self) = 0, then P does not have a range equal to  $\mathcal{N}$ , which is contradicted by the fact that P returns y on input y, and so has the set of return values  $\{0, 1, \ldots\} = \mathcal{N}$ .

- 4. We have the following answers.
  - (a) g(a) = 0 since  $P_a$  terminates on input 1 (verify!) and thus  $W_a = \{1\} \neq \emptyset$ .
  - (b) g(b) = 1 since  $P_b$  does not terminate on any input (why?) and thus  $W_b = \emptyset$ .
  - (c) g(c) = 1 since  $P_c$  does not terminate on any input (why?) and thus  $W_c = \emptyset$ .
- 5. We have the following program P.

Input  $y \in \mathcal{N}$ . If g(self) = 1, Return 0. Loop Forever.

If g(self) = 1, then it means  $W_{\text{self}} = \emptyset$ , but P returns 0 for each input y, which implies  $W_{\text{self}} = \mathcal{N}$ , a contradiction.

If g(self) = 0, then it means  $W_{\texttt{self}} \neq \emptyset$ , but P loops forever on each input y, which implies  $W_{\texttt{self}} = \emptyset$ , a contradiction.

- 6. We have the following answers.
  - (a) g(a) = 1 since  $\phi_a(y) = y^2$  has an infinite range:  $E_a = \{1, 4, 9, 25, \ldots\},\$
  - (b) g(b) = 1 since  $\phi_b(y) = y$  has an infinite range  $E_b = \mathcal{N}$ , and
  - (c) g(c) = 0 since  $\phi_c(y) = \operatorname{sgn}(y)$  has finite range equal to  $\{0, 1\}$ .
- 7. Consider the following program P.

Input  $y \in \mathcal{N}$ . If g(self) = 1, Return 0. Return y. If g(self) = 1, then it means  $|E_{\texttt{self}}| = \infty$ , but the program returns 0 for each input y, which implies  $E_{\texttt{self}} = \{0\}$  which is finite, a contradiction.

If g(self) = 0, then it means  $|E_{\texttt{self}}|$  is finite, but the program returns y on each input y, which implies  $E_{\texttt{self}} = \mathcal{N}$ , a contradiction.

8. Assume B(x) is decidable. Since  $\mathcal{B}$  is nonempty there exists a unary computable function  $f \in \mathcal{B}$ . Similarly, since  $\mathcal{B}$  is not all of  $\mathcal{C}_1$ , there is a unary computable function  $g \notin \mathcal{B}$ . Now consider the following program P.

Input  $x \in \mathcal{N}$ . If B(self) = 1, Simulate g on input x. Return g(x) if it is defined.

Simulate f on input x.

Return f(x) if it is defined.

Since f and g are computable, so is P. Let e denote the Gödel number of P. Assume B(e) = 1. By definition, this means that  $\phi_e \in \mathcal{B}$ . But in examining P we see that P simulates g so that  $\phi_e = g \notin \mathcal{B}$ , a contradiction. Similarly, if B(e) = 0, then  $\phi_e \notin \mathcal{B}$ . But in this case P simulates f so that  $\phi_e = f \in \mathcal{B}$ , a contradiction. Therefore, B cannot be decidable.

9. The function  $\lfloor x^{1/n} \rfloor$  may be computed as

$$\mu(z \le x)(z^n > x) - 1.$$

10. Function  $f(n,x) = \lfloor x^{1/n} \rfloor$  is computable by the previous exercise. Therefore, by the s-m-n theorem, there exists a total computable function k(n) for which  $\phi_{k(n)}(x) = \lfloor x^{1/n} \rfloor$ . Finally, by Theorem 4, there is an integer n for which

$$\phi_n(x) = \phi_{k(n)}(x) = \lfloor x^{1/n} \rfloor.$$

11. Assume E(x) is decidable, where E(x) = 1 iff  $x \in E_x$ . Now consider the following program P.

Input  $x \in \mathcal{N}$ . If E(self) = 1, Loop forever. Return self.

Since E(x) is decidable, P is computable. Let e denote the Gödel number of P. Assume E(e) = 1. By definition, this means that  $e \in E_e$ , meaning that P returns e on some input x. However, since E(e) = 1, P does not terminate on any input, meaning that  $E_e = \emptyset$ , a contradiction.

Similarly, if E(e) = 0, then  $e \notin E_e$ . But in this case P returns e, meaning that  $e \in E_e$ , a contradiction. Therefore, E(x), i.e. the Self-Output property, is not decidable.

12. Function  $f(y, x) = y^{10}$  is primitive recursive, and hence computable. Therefore, by the s-m-n theorem, there exists a total computable function k(y) for which  $\phi_{k(y)}(x) = y^{10}$ . Finally, by Theorem 4, there is an integer e for which

$$\phi_e(x) = \phi_{k(e)}(x) = e^{10}$$

for all  $x \in \mathcal{N}$ .

13. Since f(n) is total computable, by Theorem 4 there is an integer n for which  $\phi_n(x) = \phi_{f(n)}(x)$ for all  $x \in \mathcal{N}$ . But the way in which Gödel number f(n) is constructed is such that, whenever  $\phi_n(x) = y$  is true, then  $P_n$  halts, which in turn implies that  $P_{f(n)}$  halts with  $\phi_{f(n)}(x) = y + 1$ , since  $P_{f(n)}$  is the same as  $P_n$ , except that in its final instruction it adds 1 to register  $R_1$ . Thus, if  $\phi_n(x)$  is defined, then we have  $\phi_n(x) = y \neq \phi_{f(n)}(x) = y + 1$ . Therefore, we must conclude that  $\phi_n(x)$  must always be undefined, meaning that  $W_n = \emptyset$ .