
Kleene’s Second Recursion Theorem and Self-Knowing
Programs

Last Updated April 6th, 2023

Kleene’s Second Recursion Theorem

“Know Thyself”

Socrates

Consider a computable function f(x, y), where x is viewed as a Gödel number of some program and
y is some other input. The following are some statements that could be made in an informal program
that computes f .

• Print the instructions of Px.

• Simulate the computation of Px on input y.

• Count the number of Jump instructions that are executed in the computation of Px on input
y.

• Send program x and y to a server on the internet.

• Return the tuple of configurations that constitutes the computation of Px on input y.

1

Now suppose we take f ’s program statements and re-write them in a self-referencing way, to where
we get statements like the following ones.

• Print my instructions.

• Simulate myself on input y.

• Count the number of Jump instructions that I execute when I’m computing input y.

• Send myself and y to a server on the internet.

• Return the tuple of configurations that constitutes my computation on input y.

A program that makes one or more references to its own Gödel number is said to be self-knowing
or self-referencing.

2

Catch-22 for a Program P Attempting to Know Itself

1. For P to know its Gödel number, it must know each of its instructions.

2. Some instructions, such as “print myself”, requires P to know its Gödel number.

Proposed Solution to Catch-22

1. Assume for the sake of argument that, after replacing statements about x with statements
about itself, that there does in fact exist a program Pe with Gödel number e that computes the
resulting function.

2. Then Pe is a function of the single variable y (since variable x has been assigned constant e).

3. Therefore, we have, for all y,
φe(y) = f(e, y).

In other words, there is a program Pe that, on input y computes f(e, y), and thus makes
references (to e that has been substituted for x) to its own Gödel number.

4. Thus, we have reduced the problem to that of finding a Gödel number e that satisfies the above
equation.

5. Stephen Kleene’s second recursion theorem states that such an e does exist!

Kleene’s Second Recursion Theorem. Let f(x, y) be a computable function that takes as
input a Gödel number x, and some additional input y. Then there is a Gödel number e for which
φe(y) = f(e, y).

3

Administrator
Pencil

Example 1. Consider the URM computable function f(x, y) which, on inputs x and y, simulates
the computation Px(y), and returns the number of times that a jump instruction is executed during
the computation Px(y). Then by the 2nd recursion theorem, there is a program Pe for which Pe(y) =
f(e, y), and so, for input y, Pe computes the number of times that its own self executes a jump
instruction during its computation with input y.

4

Proof of Kleene’s Second Recursion Theorem. The idea behind the proof is to divide the
construction of the desired program P = ABC into three parts: A, B, and C which we now describe.
Assume that y is the input to P .

Part A. • Move y to register R2.

• Place B’s Gödel number b in R1.

Part B. • Use b in R1 to compute A’s Gödel number a.

• Compute C’s Gödel number c.

• Compute
e = γ(γ−1(a), γ−1(b)γ−1(c)) = γ(ABC) = γ(P),

the Gödel number of the concatenation of A’s, B’s, and C’s instructions.

• Place e in R1, with y remaining in R2.

Part C. Compute f(e, y).

Notes.

1. The most straightforward of the three is part C, since its sole purpose is to compute function f
which is assumed URM computable, and so C’s instructions consist of the instructions of the
URM program used to compute f .

2. The clever part of the above program is understanding how A is able to compute B’s Gödel
number and vice versa. This is actually made possible by an elementary use of the s-m-n
theorem.

3. Consider the function g(x, y) = x. By the s-m-n theorem, there is a total computable function
k(x) for which

φk(x)(y) = g(x, y) = x.

4. Then define A’s Gödel number to be equal to k(b). This works because, on input y, program
A outputs

φk(b)(y) = b

in register R1, and has the side effect of placing y in R2 via an initial T (1, 2) statement.
Therefore A works in exactly the way it was described above.

5

Administrator
Pencil

Given that a = k(b) we may now describe B’s program as follows.

Program B

Input Gödel number z.

Compute Gödel number k(z).

Compute c = γ(C).

Return
γ(γ−1(k(z)), γ−1(z), c).

Important: notice that B’s program does not depend on knowing A’s Gödel number a. If it did, then
it would create a circularity error, since a = k(b) already depends on B’s Gödel number. However,
B is able to compute a once it has its own Gödel number z = b since step 2 of its algorithm yields
a = k(b).

6

Thus, we see that, after the execution of A on input y, B receives input z = b which gives a = k(z) =
k(b), and so B outputs into R1 the value

e = γ(γ−1(a), γ−1(b), γ−1(c)) = γ(ABC) = γ(P).

The following diagram shows the results of all three programs combined in sequence, where v
X→ w

means that program X inputs v and outputs w. Then we have

y
A→ (b, y)

B→ (e = γ(ABC), y)
C→ f(e = γ(ABC), y).

Therefore, P = ABC = Pe computes
φe(y) = f(e, y),

and the proof is complete.

7

Example 2. Program P is called totally introspective iff, on input y, P returns a number that
encodes every configuration of the computation of P on input y. Letting σ(x, y, i) denote the encoding
of the i th configuration of the computation Px(y), then we define the computable function

f(x, y) =

{ ∏
i≤t
p
σ(x,y,i)
i if Px(y) ↓ in t steps

undefined otherwise

Now, by the 2nd recursion theorem, there exists a Gödel number e for which φe(y) = f(e, y), meaning
that Pe is totally introspective, since, on input y, it outputs an encoding of all the configurations
used in the computation Pe(y).

8

The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P . Namely,
we may make reference to P ’s Gödel number, which is represented with the keyword self. This
keyword is similar to the this keyword of Java, which refers to the object that a Java method is
acting on. For example, the following are valid programming statements for program P :

int f(int y)

{

int length = self.instructions.length;

print("Hi! I have Godel number equal to ");

print(self);

print(".\nI have ");

print(length);

print(" instructions.\nI will return the square of the output that results ");

print("from simulating myself on input y.\n");

print("What are the possibilities for the output value?\n");

length = simulate(self,y);

return length*length;

}

To justify such a program, suppose y ∈ N is the input to P , and the purpose of P is to implement
the unary computable function f(y). Then we may do the following.

1. Transform P by adding another input x, so that we are now implementing function f(x, y).

2. Replace each occurrence of self with x.

3. Use the method described in the proof of Kleene’s 2nd Recursion Theorem to compute an e for
which Pe computes

φe(y) = f(e, y).

4. Therefore, Pe computes f(y), with e substituted for x.

5. Therefore, Pe’s references to self are justified, since self = e, the Gödel number of the
program that computes f(y).

9

Kleene’s 2nd Recursion Theorem and Undecidability

Recall that a predicate function p is decidable iff there is some URM program that is capable of
computing p. Otherwise, we say that p is undecidable.

Example 3. Let x and y be the encodings of two DFA’sMx andMy and let predicate EQ DFA(x, y) =
1 iff L(Mx) = L(My), i.e. Mx and My accept the same set of words. Then EQ DFA(x, y) is decidable
via the following algorithm that is outlined below.

I. Compute the DFA M that accepts the language

L(Mx)⊕ L(My) = (L(Mx) ∩ L(My)) ∪ (L(My) ∩ L(Mx)).

This can be done using both the Intersection Algorithm and the algorithm for computing an
NFA that accepts the union of two languages (and then converting the NFA to a DFA).

II. We have L(Mx) = L(My) iff L(Mx)⊕ L(My) = ∅ (why?).

III. Thus, we need only check if the initial state of M can reach any of its accepting states along
some path in the state diagram. Then L(Mx) = L(My) iff there is no path from the initial
state to an accepting state.

10

We state the following Theorem without proof (See Chapter 4 of Sipser).

Theorem 2. Let x and y be the encodings of two CFG’sGx andGy and let predicate EQ CFG(x, y) =
1 iff L(Gx) = L(Gy), i.e. Gx and Gy derive the same set of words. Then EQ CFG(x, y) is undecidable.

Now consider a predicate function p(x) that outputs a 1 iff the URM program having Gödel number x
has some property. Then Kleene’s 2nd Recursion theorem can be used to show that p is undecidable.
To accomplish this we use the following strategy.

1. Assume p decidable.

2. Define a program P which, on input y, first computes p(self).

3. If p(self) = 1, then P proceeds to act in a contradicting way so that it is necessary for p(γ(P)) =
0.

4. If p(self) = 0, then P proceeds to act in a contradicting way so that it is necessary for p(γ(P)) =
1.

5. From 3 and 4, we must conclude that p is undecidable.

11

Theorem 3. The Halting Problem is the problem of deciding whether or not the program whose
Gödel number is x halts on input y. Let H(x, y) be the predicate function for which H(x, y) = 1 iff
Px(y) ↓. Then H is undecidable. Equivalently, H(x, y) = 1 iff y ∈ Wx. is undecidable.

Example 4. Provide a program P1 for which H(γ(P1), 1) = 1, and a P2 for which H(γ(P2), 1) = 0.

12

Proof of Theorem 3. We assume the Halting Problem is decidable, i.e.

H(x, y) =

{
1 if y ∈ Wx

0 otherwise

is total computable. Now consider the following program P .

Input y ∈ N .

If H(self, y), loop forever.

Return 1.

Let e = self denote the Gödel number for P . Then Pe(e) = 1 provided H(e, e) = 0 iff Pe(e) does not
halt, a contradiction. Similarly, Pe(e) does not halt provided H(e, e) = 1 iff Pe(e) does halt, another
contradiction. Therefore, the assumption that H is decidable must be false.

13

Example 5. Prove that the function

g(x) =

{
1 if φx is total
0 otherwise

is undecidable. First give examples of programs P1 and P2 for which g(γ(P1)) = 1 and g(γ(P2)) = 0.

14

Other Applications of Kleene’s 2nd Recursion Theorem

Theorem 4. Consider the set M , where x ∈ M iff there is no y < x for which φy = φx. In other
words, Px is a minimal program for function φx. Then M is not recursively enumerable.

Proof of Theorem 3. Suppose M is recursively enumerable. Then it is an exercise to show
that there is a total computable unary function f whose range is equal to M . In other words
M = {f(i)|i ∈ N}. Consider the following program P .

Input x ∈ N .

For each i = 0, 1, . . .

If f(i) > self, then break.

Simulate program Pf(i) on input x, and return y in case Pf(i)(x) ↓ y.

Let e be the Gödel number of P . Then it follows that φe = φf(i). But f(i) > e which contradicts the
fact that f(i) ∈M . Therefore, the assumption that M is r.e. must be false.

15

Theorem 5. Let f be a total computable unary function. Then there is a number n ∈ N for which
φn = φf(n). We refer to n as a fixed point for f .

Proof of Theorem 4. Consider the following program P .

Input x ∈ N .

Compute y = f(self).

Simulate program Py on input x, and return z in case Py(x) ↓ z.

Then
φy = φf(self) = φself,

and so n = self is a fixed point for f .

16

Exercises

1. With respect to Kleene’s 2nd Recursion Theorem, prove that there are infinitely many values
e for which φe(y) = f(e, y). Hint: consider program B in the proof of the theorem.

2. Recall that a function f : N → N is onto provided for every y ∈ N there is an x ∈ N for
which f(x) = y. Consider the function

g(x) =

{
1 if φx is onto
0 otherwise

Evaluate g(a), g(b), and g(c), where

(a) φa(y) = y2

(b) φb(y) = 1

(c) φc(y) = y.

3. Prove that the function

g(x) =

{
1 if φx is onto
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not φx is onto. Do this by
writing a program P that uses g and makes use of the self programming concept.

4. Recall that Wx denotes the domain of the function φx(y), i.e. the natural number inputs y to
φx for which φx(y) is defined. Consider the function

g(x) =

{
1 if Wx = ∅
0 otherwise

Evaluate g(a), g(b), and g(c), where

(a) Pa = S(2), S(2), S(1), J(1, 2, 6), J(1, 1, 3)

(b) Pb = S(2), J(2, 3, 3), J(1, 1, 1)

(c) Pc = S(1), S(1), S(2), J(1, 2, 6), J(1, 1, 1)

5. Prove that the function

g(x) =

{
1 if Wx = ∅
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not φx has an empty domain.
Do this by writing a program P that uses g and makes use of the self programming concept.
Then show how P creates a contradiction.

6. Consider the function

g(x) =

{
1 if |Ex| =∞
0 otherwise

In other words g(x) = 1 iff function φx(y) has an infinite range, meaning that it outputs an
infinite number of different values. Evaluate g(a), g(b), and g(c), where

17

(a) φa(y) = y2

(b) φb(y) = y

(c) φc(y) = sgn(y).

7. Prove that the function

g(x) =

{
1 if |Ex| =∞
0 otherwise

is not URM computable. In other words, there is no URM program that, on input x, always
halts and either outputs 1 or 0 as output, depending on whether or not φx has an infinite range.
Do this by writing a program P that uses g and makes use of the self programming concept.
Then show how P creates a contradiction.

8. Rice’s theorem states that if C1 denotes the set of unary computable functions, and B is a
nonempty proper subset of C1, then the predicate function

B(x) =

{
1 if φx ∈ B
0 otherwise

is undecidable. Prove Rice’s theorem by writing an informal program P that uses B(x) and
makes use of the self programming concept. Then show how P creates a contradiction. Hint:
assume B(x) is decidable, and take advantage of the fact that the set of functions B is both
nonempty and not all of C1.

9. For each constant n ≥ 1, show that bx1/nc is a primitive-recursive function of x.

10. Prove that there exists an n for which φn(x) = bx1/nc. Hint: use the s-m-n theorem and
Theorem 4.

11. Recall that program Px has the self-output property iff x ∈ Ex. By writing an informal program
that makes use of the programming construct self, prove that the self-output property is
undecidable.

12. Show that there is a number e for which φe(x) = e10, for all x ∈ N .

13. Consider the following description of a function f(n). On input n, return the Gödel number
of the program P ′ that is the result of appending program Pn with a minimum number of
successor instructions S(1), . . . , S(1) so that it is always guaranteed that, should Pn halt on
an input, then the final instruction of P ′ will be one of these successor instructions. Then by
the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for
f(n), i.e. φn = φf(n), then necessarily φn(x) is undefined for all x.

Exercise Solutions

1. Since the proof of Kleene’s 2nd Recursion Theorem constructs e as e = γ(ABC), by changing
the instructions of B, we get a new value for e, since B has changed. We only have to make
sure that B’s instructions are changed in a trivial way that does not affect its functionality as
described in the proof.

18

2. A function φx(y) is onto iff Ex = N , where Ex denotes the range of φx. Thus,

(a) g(a) = 0 since φa(y) = y2 is not onto since Ea = {1, 4, 9, 25, . . .} 6= N ,

(b) g(b) = 0 since φb(y) = 1 is not onto since Eb = {1} 6= N , and

(c) g(c) = 1 since φc(y) = y is onto since Ec = N .

3. We have the following program P .

Input y ∈ N .

If g(self) = 1, loop forever.

Return y;

If g(self) = 1, then P has a range equal to N which is impossible since it does not terminate
on any input (loops forever). If g(self) = 0, then P does not have a range equal to N , which
is contradicted by the fact that P returns y on input y, and so has the set of return values
{0, 1, . . .} = N .

4. We have the following answers.

(a) g(a) = 0 since Pa terminates on input 1 (verify!) and thus Wa = {1} 6= ∅.
(b) g(b) = 1 since Pb does not terminate on any input (why?) and thus Wb = ∅.
(c) g(c) = 1 since Pc does not terminate on any input (why?) and thus Wc = ∅.

5. We have the following program P .

Input y ∈ N .

If g(self) = 1, Return 0.

Loop Forever.

If g(self) = 1, then it means Wself = ∅, but P returns 0 for each input y, which implies
Wself = N , a contradiction.

If g(self) = 0, then it means Wself 6= ∅, but P loops forever on each input y, which implies
Wself = ∅, a contradiction.

6. We have the following answers.

(a) g(a) = 1 since φa(y) = y2 has an infinite range: Ea = {1, 4, 9, 25, . . .},
(b) g(b) = 1 since φb(y) = y has an infinite range Eb = N , and

(c) g(c) = 0 since φc(y) = sgn(y) has finite range equal to {0, 1}.

7. Consider the following program P .

Input y ∈ N .

If g(self) = 1, Return 0.

Return y.

19

If g(self) = 1, then it means |Eself| =∞, but the program returns 0 for each input y, which
implies Eself = {0} which is finite, a contradiction.

If g(self) = 0, then it means |Eself| is finite, but the program returns y on each input y, which
implies Eself = N , a contradiction.

8. Assume B(x) is decidable. Since B is nonempty there exists a unary computable function
f ∈ B. Similarly, since B is not all of C1, there is a unary computable function g 6∈ B. Now
consider the following program P .

Input x ∈ N .

If B(self) = 1,

Simulate g on input x.

Return g(x) if it is defined.

Simulate f on input x.

Return f(x) if it is defined.

Since f and g are computable, so is P . Let e denote the Gödel number of P . Assume B(e) = 1.
By definition, this means that φe ∈ B. But in examining P we see that P simulates g so that
φe = g 6∈ B, a contradiction. Similarly, if B(e) = 0, then φe 6∈ B. But in this case P simulates
f so that φe = f ∈ B, a contradiction. Therefore, B cannot be decidable.

9. The function bx1/nc may be computed as

µ(z ≤ x)(zn > x)− 1.

10. Function f(n, x) = bx1/nc is computable by the previous exercise. Therefore, by the s-m-n
theorem, there exists a total computable function k(n) for which φk(n)(x) = bx1/nc. Finally, by
Theorem 4, there is an integer n for which

φn(x) = φk(n)(x) = bx1/nc.

11. Assume E(x) is decidable, where E(x) = 1 iff x ∈ Ex. Now consider the following program P .

Input x ∈ N .

If E(self) = 1,

Loop forever.

Return self.

Since E(x) is decidable, P is computable. Let e denote the Gödel number of P . Assume
E(e) = 1. By definition, this means that e ∈ Ee, meaning that P returns e on some input
x. However, since E(e) = 1, P does not terminate on any input, meaning that Ee = ∅, a
contradiction.

Similarly, if E(e) = 0, then e 6∈ Ee. But in this case P returns e, meaning that e ∈ Ee, a
contradiction. Therefore, E(x), i.e. the Self-Output property, is not decidable.

20

12. Function f(y, x) = y10 is primitive recursive, and hence computable. Therefore, by the s-m-n
theorem, there exists a total computable function k(y) for which φk(y)(x) = y10. Finally, by
Theorem 4, there is an integer e for which

φe(x) = φk(e)(x) = e10

for all x ∈ N .

13. Since f(n) is total computable, by Theorem 4 there is an integer n for which φn(x) = φf(n)(x)
for all x ∈ N . But the way in which Gödel number f(n) is constructed is such that, whenever
φn(x) = y is true, then Pn halts, which in turn implies that Pf(n) halts with φf(n)(x) = y + 1,
since Pf(n) is the same as Pn, except that in its final instruction it adds 1 to register R1. Thus,
if φn(x) is defined, then we have φn(x) = y 6= φf(n)(x) = y + 1. Therefore, we must conclude
that φn(x) must always be undefined, meaning that Wn = ∅.

21

