
Undecidability and the Diagonalization Method

Last Updated October 18th, 2023

1 Introduction

In this lecture the term “computable function” refers to a function that is URM computable or,
equivalently, general recursive.

Recall that a predicate function is a functionM(x) whose codomain is {0, 1}. Moreover, associated
with every decision problem A is a predicate function d : A → {0, 1}, called the characteristic
function for A and for which

dA(x) =

{
1 if x is a positive instance of A
0 if x is a negative instance of A

Finally, we say that A is decidable iff function dA is total computable. In other words, for any
instance x of A, there is a URM program PA that

1. halts on all inputs,

2. has a range equal to {0, 1}, and

3. outputs 1 iff x is a positive instance of A.

On the other hand, if A’s characteristic function is not total URM computable, then A is said to be
undecidable.

In this lecture we assume that the instances of every decision problem are equal to the set N of
natural numbers.

1

Administrator
Pencil



Example 1.1. Consider the decision problem Prime whose instances are natural numbers and where
a positive instance is a prime number. Then Prime is decidable since one can write a URM program
that, on input n, outputs 1 iff n is prime, and 0 if n is 0, 1, or a composite number. Such a program
is often one of the first programs assigned in a beginning programming class.

2



1.1 Properties of programs and computable functions

Since every program P may be associated with a unique natural number x, called its its Gödel
number, it allows us to readily define decision problems about programs.

Example 1.2. Consider decision problem Total where an instance of Total is a Gödel number x,
and the problem is to decide if program Px is total, meaning that it halts on all of its inputs.

One of the remarkable achievements of Computability theory is in showing that almost all program
decision problems are undecidable. In fact program decision problems were among the first to be
shown undecidable. Later, other mathematical problems were shown to be undecidable with the help
of our old fried from complexity theory: the map reduction (as well as the Turing reduction). Indeed,
the process of showing that some decision problem B is undecidable is similar to that of showing
a problem in NP is NP-complete: namely, show that a known undecidable problem A is mapping
reducible to B, i.e. A ≤m B. Of course, this strategy requires that there be an initial undecidable
problem that was proven as such using some other proof technique. And this technique is called the
“diagonalization method”, and is the subject of the next section.

3

Administrator
Pencil



2 The Diagnonalization Method

Given an infinite set S whose members are sequences of words, the diagonalization method is a
means for proving that the members of S cannot be placed in a (infinite) list. The proof technique
works in the following steps.

1. Assume the members of S can be placed in an infinite list L, namely L = s0, s1, s2, . . ..

2. Let wij denote the jth word of sequence si. Define a new sequence s, where the jth word of s,
call it vj, is defined so that vj ̸= wjj, the jth word of sj.

3. Then s is not in the list of words since s ̸= sj for all j = 0, 1, 2, . . .. This is true since word j
of s is different from word j of sj.

4. Show that, despite being different from each word in L, s nevertheless satisfies the property
needed to be a member of S.

5. Conclude that the list L does not include every member of S.

4

Administrator
Pencil

Administrator
Pencil



2.1 There exist functions that are not computable

Let CF denote the set of all URM-computable functions. One consequence of being able to list
all URM programs as P0, P1, P2, . . . is that we may also list all URM-computable functions, namely
ϕ0, ϕ1, ϕ2, . . .. Thus CF is countably infinite, meaning that we can place all computable functions
in an infinite list.

On the other hand, the following theorem tells us that there not all functions f : N → N are
computable.

Theorem 2.1. The set F of all functions from natural numbers to natural numbers cannot be
enumerated. Therefore, there is at least one function that is not computable.

Proof. We use the diagonalization method to obtain a proof by contradiction. Suppose F can be
enumerated as f0, f1, f2, . . .. Then we may define the function g ∈ F by

g(x) =

{
0 if fx(x) is undefined
fx(x) + 1 otherwise

Notice that g(x) is a function that disagrees in output with every function in the enumeration.
Thus, since g cannot disagree with itself, we must conclude that g is not in the enumeration which
contradicts the assumption that all functions in F are in the enumeration.

The above proof is an example of using the diagonalization method. The table below helps visualize
this method as it is used in Theorem 2.1.

index\input n 0 1 2 · · · k · · · Observation
f0(n) 2 → 3 7 4 · · · 18 · · · g(0) = 3 ̸= f0(0) = 2
f1(n) ↑ ↑→ 0 7 · · · ↑ · · · g(1) = 0 ̸= f1(1) =↑
f2(n) 7 5 9 → 10 · · · 36 · · · g(2) = 10 ̸= f2(2) = 9
...

...
...

...
. . .

...
...

...
fk(n) ↑ 1 ↑ · · · 1 → 2 · · · g(k) = 2 ̸= fk(k) = 1
...

...
...

...
...

...
. . .

...

The theory of probability and measurable sets allows us to say something stronger: “when randomly
generating a function f : N → N , with probability equal to 1 a non-computable function will be
generated”. In other words, the event of randomly generating a computable function has probability
equal to 0.”

5

Administrator
Pencil



3 The Self Acceptance Property is Undecidable

Program P is said to have the self acceptance property iff Px(x) is defined, where x is the Gödel
number of P . A more succinct way of describing this property is that Px has the self acceptance
property iff x ∈ Wx. Stated as a decision problem, x is a positive instance of Self Accept iff Px(x)
is defined.

Theorem 3.1. Self Accept is undecidable.

Proof. Suppose by way of contradiction that Self Accept is decidable. Then the function

f(x) =

{
1 if x ∈ Wx

0 otherwise

is total computable. Let F be the URM program that computes f(x). Now define the function g(x)
as

g(x) =

{
1 if f(x) = 0
undefined otherwise

To see that g(x) is computable, consider a description of the a program G for computing g. On input
x the program first executes the program F that computes f(x). If F (x) = 0, then G returns 1.
Otherwise, G enters an infinite loop, so that g(x) is undefined. By the Church-Turing thesis, there
is a URM program that behaves in the same manner as G.

Now, since g(x) is computable, there is an index e, such that g(x) = ϕe(x) for all x ∈ N . In particular
g(e) = ϕe(e). Now suppose g(e) is defined. Then ϕe(e) is defined, meaning that e ∈ We, which implies
that M(e) = 1, which in turn (by definition of g) implies that g(e) is undefined, a contradiction.

On the other hand, if g(e) is undefined, then ϕe(e) is undefined, meaning that e ̸∈ We, which implies
that f(e) = 0, which in turn (by definition of g) implies that g(e) = 1 is defined, a contradiction.
Therefore, Self Acceptance must be undecidable.

Corollary 1. The Halting Problem is the problem of deciding if ϕx(y) is defined, for given
x, y ∈ N . Moreover, the Halting Problem is undecidable.

Proof of Corollary 1. If the Haltng Problem were decidable, say by a total computable predicate
function f(x, y). Then Self Acceptance becomes decidable. Indeed, x ∈ Wx iff ϕx(x) is defined, iff
f(x, x) = 1, which contradicts the undecidability of the self-defined property.

6

Administrator
Pencil

Administrator
Pencil



The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to g based on the values of
f(x).

index\input n 0 1 2 · · · e · · · self accepting?
ϕ0(n) 2 →↑ 7 4 · · · 18 · · · yes
ϕ1(n) ↑ ↑→ 1 7 · · · ↑ · · · no
ϕ2(n) 7 5 9 →↑ · · · 36 · · · yes
...

...
...

...
. . .

...
...

...
g(n) = ϕe(n) ↑ 1 ↑ · · · 1 →↑ · · · yes/no
...

...
...

...
...

...
. . .

...

g(0) =↑, g(1) = 1, g(2) =↑, . . ., g(e) =? (1 or ↑?). The original table states that g(e) = 1, but the
changing of values along the diagonal in order to define g implies that g is undefined, a contradiction.

7

Administrator
Pencil



3.1 The Total decision problem is undecidable

We use the Church-Turing thesis to prove that given a URM program P , there is no algorithm for
deciding whether or not P computes a total function.

Theorem 2. The function

g(x) =

{
1 if ϕx is total
0 otherwise

is not URM computable. In other words, there is no URM program P for which, on input x, P (x) ↓
with either 1 or 0 as output, depending on whether or not ϕx is total.

Proof Theorem 2. By way of contradiction, assume that g(x) is total and URM computable via
URM program M . Then the function f(x) defined by

f(x) =

{
ψU(x, x) + 1 if g(x) = 1
0 if g(x) = 0

is URM computable by the Church-Turing thesis as follows.

1. On input x, compute g(x) by simulating M on input x.

2. If M(x) = 0, then return 0.

3. Else, simulate universal URM PU on inputs x and x. Since Px is total the simulation produces
output z = PU(x, x). Return z + 1.

By the Church-Turing thesis, there is a URM program that computes f(x). Moreover, f(x) is total,
since g(x) is total and PU(x, x) always halts in case g(x) = 1.

Since f is URM computable, let i be an index for f , meaning that f(x) = ϕi(x). Then ϕi is total,
which means that g(i) = 1. Thus, we have the following two contradictory facts:

1. f(i) = ϕi(i) by way of i being an index for f .

2. f(i) = ψU(i, i) + 1 = ϕi(i) + 1 by the definition of f .

Therefore, our assumption that g(x) is total computable must be false, and ϕx being total is an
undecidable property. of computable functions.

8



The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to f by g.

index\input x 0 1 2 · · · i · · · total?
ϕ0(x) 2 → 3 7 4 · · · 18 · · · yes
ϕ1(x) ↑ 2 → 0 7 · · · ↑ · · · no
ϕ2(x) 7 5 9 → 10 · · · 36 · · · yes
...

...
...

...
. . .

...
...

...
f(x) = ϕi(x) 3 0 10 · · · 95 → 96 · · · yes
...

...
...

...
...

...
. . .

...

f(0) = 3, f(1) = 0, f(2) = 10, . . ., f(i) =? (95 or 96?). The original table states that f(i) = 95,
but the changing of values along the diagonal in order to define f implies that it must be 96, a
contradiction.

9



Using Reducibility to Prove Undecidability

Given a total (not necessarily computable) predicate function M(x) and an integer x, we call x a
positive instance ofM , iffM(x) = 1. Similarly, x a negative instance iffM(x) = 0. For example,
if M(x) is the predicate function for deciding if x is even, then 2 is a positive instance of M , while 3
is a negative instance.

LetM(x) and N(x) be two total but not necessarily computable predicate functions. We say thatM
is many-to-one reducible (also referred to as functional reducible) to N , written as M ≤m N ,
iff there exists a total computable function f(x) for which M(x) = N(f(x)).

Example 1. If M(x) is the predicate function for deciding if x is even, and N(x) is the predicate
function for deciding if x is odd, then M ≤m N via the function f(x) = x + 1. In other words,
M(x) = N(f(x)) = N(x+ 1).

The following theorem shows how to use functional reducibility to establish both decidability and
undecidability.

Theorem 2. Given predicate functions M(x) and N(x) with M ≤m N , if N is decidable then so is
M . Contrapositively, if M is undecidable, then so is N .

Proof Theorem 2. Suppose N is decidable and M ≤m N via total computable reducing function
f(x). Then N(f(x)) is total computable, since both N and f are total computable. Therefore, since
M(x) = N(f(x)), it follows that M is also total computable, and hence decidable.

Theorem 1 may be used to show the undecidability of a predicate function by functionally reducing
a known undecidable predicate function to the predicate function in question. Moreover, the s-m-n
theorem can prove very useful for finding the necessary reducing function.

10


