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Introduction

History records that in the 6th century B.C. Thales of Miletus measured the height of
the great pyramid at Giza by comparing its shadow to the shadow of his staff [3]. But
there are differing versions of how he may actually have done this [5]. We will do
some mathematical detective work to explore which version is more likely.

The earliest version is attributed to Hieronymus (4th century B.C.) by Diogenes
(2nd century A.D.), who writes:

- “[Thales]. . . succeeded in measuring the height of the pyramids by observing the
length of the shadow at the moment when a man’s shadow is equal to his own

height.”

Thales here observes that when one object casts a shadow equal to its height, then all
objects cast shadows equal to their own heights. In Ficure 1, this means that when
H=S, then h=s. This “equal shadow” phenomenon allows one to measure the
height of a tall object by measuring the length of its shadow along the ground. But
Thales may have used another method. Plutarch (2nd century A.D.) writes: “Although
the king of Egypt admired Thales for many things, he particularly liked the way in
which he measured the height of the pyramid without any trouble or instrument.”
Plutarch continues:

“[Thales] set up a stick at the tip of the shadow cast by the pyramid, and thus
having made two triangles by the sun’s rays, he showed that the ratio of the
pyramid to the stick is the same as the ratio of the respective shadows.”
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FIGURE 1
Shadows of pyramid and stick.
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This more general “ratio” method does not require the shadow of the stick to be
equal to its length. In Ficure 1 Thales computes H from the ratio H/h =S /s. It is
likely that Thales knew about such ratios for legs of right triangles, since the Egyptians
also had used such techniques in calculations involving pyramids, calling the method
seked [5]. But neither Thales nor the Egyptians had a general theory of similar
triangles. The innovation that Thales makes here is his observation that the sun’s rays
form a right triangle with the stick and its shadow, so that seked can be applied to this
abstract right triangle.

Both the equal shadow method and the ratio method are simple and elegant. The
equal shadow method is particularly elegant because it requires no calculations—the
length of the shadow is the height of the object being measured. But the shape of
the pyramid presents several difficulties, the simplest being that at certain times
Thales’ staff casts a shadow but the pyramid casts no shadow at alll However, even
when the pyramid does cast a shadow, there are still some practical problems to
implementing these methods. Before we examine these problems we consider some
recorded information about Thales himself, which may give us a hint about his view of
theory and applications.

Thales is reputed to have been the first to put geometry on a logical demonstrative
basis [2]; textbooks on the history of mathematics refer to him as the first mathemati-
cian. Evidently, Thales was more interested in logic and proof than in practical
matters. According to legend, he was once walking, intently gazing up at the stars,
when he fell into a well. A woman with him exclaimed, “How can you tell what is
going on in the sky when you can’t even see what is lying at your feet? So it appears
that Thales fit the stereotype of a pure mathematician. But this image must be
balanced with his association with the very practical Egyptians. In fact, Thales was one
of the first Greeks to travel to Egypt, where it is said he learned geometry and also
discovered many propositions himself. Egyptian geometry was a tool to serve practical
needs which often required extreme precision. Egyptian monuments, still standing
millennia later, are witnesses to the accuracy of their builders. Indeed the great
pyramid is thought to have been aligned so perfectly north that its minute deviation
from true north is attributed by some scientists to continental drift! So, did Thales
actually measure the height of the pyramid or did he merely perform a beautiful
thought experiment?

Implementing the ratio method

To use any shadow method one needs to know the length of the shadow as measured
from the center of the pyramid. This cannot be done directly since the mass of the
pyramid lies between the tip of the shadow and the center. It can be readily done,
however, if the shadow is perpendicular to one side of the pyramid as shown in
Ficure 2a. In that case the length of the shadow to the center of the pyramid is simply
the length of the shadow along the ground plus the length of half the side of the
pyramid. If the shadow is skew, as in Ficure 2b, then calculating the length of the
shadow requires the use of the law of cosines, an idea not available to Thales.

So all Thales needed to do was to visit the pyramid one day and wait for the
moment when the shadow of the pyramid is perpendicular to one of the sides. Let us
see how this could happen. The pyramid is located at 30° N latitude and since the axis
of the earth is tilted 23.5° from the celestial pole, it follows that the pyramid is always
located above the plane of the ecliptic. Thus the shadow of the pyramid can never lie
on its south side. Let’s first consider the case when the shadow lies north of the
pyramid. Ficure 3 shows the situation at noon.
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FIGURE 2
Top views of pyramid and its shadow.

FIGURE 3
Shadow of the pyramid at noon.

During the course of a year, as the earth moves around the sun, the angle ¢ in
Ficure 3 varies between —23.5° and 23.5°, so the angle a =30° — ¢ varies between
a=30°+ 23.5°=53.5° at the winter solstice, and o= 30°— 23.5°=6.5° at the
summer solstice (see [4]). The angle « is called the zenith distance of the sun because
it is the angle formed by the sun and the zenith. From early March to early October,
the zenith distance of the sun is small enough at noon so that the pyramid casts no
shadow at all—the sun is so high in the sky that all four faces are illuminated. This is
because the faces of the pyramid rise at an angle of 51.8° to the horizontal (or
90° — 51.8° = 38.2° from the vertical), so whenever the zenith distance of the sun is
less than 38.2° it will shine on all four faces. For the rest of the year, the shadow is
perpendicular to the north side once each day. As Ficure 3 indicates, this occurs at
noon—when the line joining the centers of the sun and earth, the polar axis, and the
axis of the pyramid all lie in the same plane.

During the spring and summer months, the shadow is also perpendicular to the
west face once in the morning, and to the east face once in the afternoon. To see this
we need a three-dimensional view of the earth. In Ficure 4, we have placed
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FIGURE 4
Pyramid and its shadow—a 3-dimensional view.

coordinate axes with the origin at the center of the earth, the z-axis oriented along the
polar axis, and the y-axis oriented so that the sun lies in the yz-plane.
The sun’s rays strike the xy-plane at the angle ¢. Thus the rays of the sun point in
the direction
= —cos ¢j — sin ¢pk.

The circle of latitude at 30°N has radius Rcos30° = V3 R /2 (where R is the radius of
the earth). Thus the position vector of each point on this circle is given by the vector
function

V3

C(6) = 5~ Rsin 6i + [2?——3 cos 0j + %Rk

where 6 is the angle shown in Ficure 4. Note that C(8) is perpendicular to the sphere
of the earth for every 6. The shadow falls east or west when it falls tangent to the
latitude circle, that is, in the direction of

V3

T(6) =C'(0) = —5-Rcos i — gRsin 0j.

The axis of the pyramid points in a direction N normal to the surface of the earth, so
at any point on the 30°N latitude circle, we can use N(6) = C(6). The shadow will fall
along the tangent to the latitude circle when the tangent T, the normal N, and the
rays of the sun § all lie in the same plane; that is, when T X N+ S = 0. Calculating the
triple product and simplifying we obtain the condition

cos 6= \/gtandx

Thus the pyramid will cast a shadow perpendicular to its east or west face when it is
located at a position corresponding to a value of @ that satisfies this condition. For
instance, at the summer solstice, when ¢ = 23.5°, we get 6= +41.14°. This corre-
sponds to times of about 9:15 AM and 2:45 PM. As the summer progresses, these
times will fall earlier in the morning and later in the afternoon, with increasingly
longer shadows. At the equinoxes, when ¢ = 0°, we have 6= +90° so the shadow
will be perpendicular to the west and east faces at 6:00 AM and 6:00 PM respectively
—sunrise and sunset on these dates when day and night are equal in duration. It is
easy to see that in the fall and winter, when ¢ < 0°, at no time during daylight hours
will the shadow be perpendicular to the east or west face.
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Can the ““equal shadow’” method be used?

Now suppose Thales was to use the “equal shadow” method. Having found the times
when the shadow is perpendicular to the pyramid, he must now find among these
times “the moment when a man’s shadow is equal to his own height.” This moment of
“equal shadow” can actually happen on at most four days in any given year, as we now
show. First let us consider the north face. If the shadow is perpendicular to the north
face, then the length of the shadow of an object of height h is s = h tan a where « is
the zenith distance of the sun at noon as in Ficure 3. Thus we have the “equal
shadow” phenomenon when a = 45°. During the course of a year a ranges from 6.5°
to 53.5° and back to 6.5°, so it appears that « can equal 45° twice. But a changes in
increments of approximately ; degree per day—actually about 94°/365.25 days
=~ 0.26° per day. So & may be equal to 45° at most twice. However it is unlikely that
a would ever exactly equal 45°, and the error could be as much as +0.13°. Since the
pyramids are approximately 480 ft high, this would result in an error of approximately
2.3 ft. Given the precision of the Egyptians, this error seems rather high.

Next, for the equal shadow phenomenon to occur at the east or west faces of the
pyramid, the angle between T and S must be 45°. But then

cos45° = % = sin fcos ¢,

so sin §=1/(y2 cos ¢). Since the shadow must also be perpendicular to the east or
west faces we also have cos 6= V3 tan ¢, so

1 =sin® 6+ cos® 0= + 3tan® ¢.

2cos® ¢
Solving we get cos = +/7/8, so ¢ = 20.7°. (The other possible solutions for ¢ do
not apply here, since ¢ takes on values between —23.5° and 23.5°, and negative ¢
corresponds to fall and winter when the pyramid does not cast a shadow perpendicu-
lar to its east or west face.) Thus there are two days in the year when the “equal
shadow” phenomenon occurs on the east or west face—the early spring day and the
late fall day when ¢ = 20.7°. Again, just as in the case of the north face, it is unlikely
that the “equal shadow” and the “perpendicular shadow” phenomena will coincide
precisely on these days, so some imprecision is unavoidable here too.

In any case it seems like a lot of trouble for Thales to hang around the pyramid,
possibly for months, waiting for the propitious moment when the equal shadow is also
perpendicular to a side. But the King said that Thales measured the height of the
pyramids without any trouble. Could Thales have possibly used a different equal-
shadow method? One that could work on any day?

Can the “equal shadow’” method be salvaged?

The main problem with implementing the “equal shadow” method is that the
measurement of the shadow is obstructed by the mass of the pyramid. Another
method Thales could have tried, which also involves “equal shadow,” is suggested in
the Project Mathematics video [1]. The idea is to wait for the shadow of a man to
lengthen by an amount equal to his height; at the same time the shadow of the
pyramid will lengthen by an amount equal to the height of the pyramid (see Ficure 5).
This method is “dynamic” in the sense that it requires observation of the shadow over
a period of time, whereas the first method is “static” in that it relies on observing the
shadow at just one instant.
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FIGURE 5
Lengthening of the shadow.

The important thing here is that this new method appears to avoid the problem of
having to measure the shadow to the center of the pyramid. Indeed all measurements
take place well away from the pyramid. So let us again see how Thales could
practically implement this new method. Thales must visit the pyramid at a time when
the tip of the shadow is away from the base of the pyramid and mark the location of
the tip of the shadow. He must then wait for the shadow to lengthen. But Thales
discovers, to his dismay, that the shadow doesn’t simply lengthen as suggested in
Ficure 5, it also moves as shown in Ficure 6. This presents a new problem, to measure
the length of the new longer shadow one must use the center of the pyramid as a
reference point. But now we are faced with the same situation as before: the mass of
the pyramid obstructs our measurement. So this method isn’t really going to work
either.

FIGURE 6
Lengthening of the shadow—top view.

What if Thales were to simply connect the tip of the original shadow with the tip of
the longer shadow and wait for that distance to equal the height? He would now have
a distance on the ground equal to the height. This situation is illustrated in Ficure 7.
Triangles ABC and abc are similar, as are triangles DAB and dab. From this it is
easy to see that h/H =ab/AB =bc/BC; since we chose h=bc it follows that
H = BC. Thus the height of the pyramid can be determined by measuring BC along
the ground. This method works, but Thales could not possibly have used it, since he
had no knowledge of the proportionality of general similar triangles.
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FIGURE 7
A method using similar triangles.

Conclusion

If Thales had used the “equal shadow” method, he would have had to do so on one of
only four days in a year, and then only obtained a rough approximation. It seems more
likely that he used a “ratio” method. This he would have had an opportunity to do at
least once a day for most of the year, and as often as twice on a good day.

Did Thales actually measure the height of the pyfamid at all? It is impossible to say

for sure, but the idea of measuring the height of such a tall object using only its
shadow is so beautiful and striking that it overshadows any of its practical applications.
This anecdote survives because it encapsulates a great idea that continues to delight
and inspire.
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