
Lecture Notes for STAT 574

DECISION TREES

A decision tree is a type of �owchart that shows a clear pathway to a decision. It starts at a single
point (or root node) which then branches (or splits) in two or more directions. Each branch o�ers
di�erent possible outcomes until a �nal outcome is achieved. When plotted as a graph, it resembles
a tree. The nodes at the end of the decision path are called leaf nodes (or terminal nodes). Be-
tween the root node and the leaf nodes, there are a number of internal nodes (or decision nodes).

Decision trees work for both categorical and numerical variables. Their objective is to partition
the population into homogeneous non-overlapping sets, based on the most signi�cant input (or
explanatory or predictor) variables. The following two types of trees are commonly used in
practice: regression tree (for a continuous target variable), and classi�cation tree, for the
categorical target variable.

Classi�cation and Regression Trees

Di�erent rules apply to "grow" regression and classi�cation trees. For regression trees, residual sum
of squares (RSS) and chi-squared automatic interaction detection (CHAID) splitting criteria are
used. For classi�cation trees, entropy, Gini, and CHAID criteria are used.

Sometimes created regression and classi�cation trees are too complex, with redundant splits, and
a very small number of cases in leaf nodes. In this case pruning of the tree is advisable, which
results in a smaller number of leaves with more substantial splitting and easier interpretation. The
cost-complexity pruning technique is commonly used.

To compare the performance of �tted regression trees and choose the best-performing tree, it is
customary to split randomly the original data set into a training set (containing typically 70% or
80% of the data rows) and a testing set (containing the remaining 30% or 20% of the rows). A
decision tree is developed on the training set, and the goodness-of-�t is veri�ed on the testing set.
For regression trees (when the response is continuous), the response is predicted on the testing data
set, and proportions of predicted values that are within, say, 10%, 15%, and 20% of the true values
are computed and compared for di�erent models. The model for which these proportions are the
highest is the best predicting model. For classi�cation trees, prediction is in the form of the proba-
bility of being in each category. We can assume that the category with the highest probability is the
one that is being predicted, and the measure of performance is the proportion of predictions that
coincide with the true observations in the testing data set. The model with the highest proportion
of correctly predicted categories should be chosen, or, equivalently, the model with the smallest
misclassi�cation rate should be chosen.

1

Regression Tree

The RSS Splitting Criterion

For Residual-Sum-of-Squares (RSS) splitting criterion, the predictor space is partitioned into multi-

dimensional rectangles R1, . . . , RJ that minimize the residual sum of squares (RSS)
J∑
j=1

∑
i∈Rj

(yi−

ŷRj
)2 where yi is the observed target variable for individual i, i = 1, . . . , n, and ŷRj

is the estimated
average response for all observations in the set Rj. In the tree-building process (also termed train-
ing a decision tree), a top-down binary splitting is used to obtain two new branches at each
decision node. For a predictor variable X, the split X = s is chosen in such a way that it leads to
the largest reduction of RSS for the two subregions {X < s} and {X ≥ s}.

Remark. It is easy to see that the RSS is minimized at the mean value. Indeed, to mini-

mize
n∑
i=1

(yi − ŷ)2, we take the derivative with respect to ŷ and set it equal to zero. We get

−2
n∑
i=1

(yi − ŷ) = 0 or
n∑
i=1

yi − nŷ = 0. From here, ŷ =
1

n

n∑
i=1

yi = ȳ. 2

Remark. The splitting procedure based on minimizing the RSS is an example of the classi�cation
and regression tree (CART) algorithm. More generally, this algorithm involves splitting based
on the minimization of some quantity. Note that in the CART algorithm, only binary splitting is
allowed.

Historical Note. The CART algorithm was introduced in the book "Classi�cation and Regression
Trees" by Breiman, L., Friedman, J., Olshen, R. and Stone, C, Chapman and Hall, Wadsworth,
New York, 1984.

The CHAID Splitting Criterion

The chi-squared automatic interaction detection (CHAID) splitting criterion is based on statistical
tests. To grow a tree, the response variable can be either continuous of categorical but the predictor
variables must be all categorical only (that is, continuous predictors are automatically segmented).

While training a tree, the next best split is determined by an F-test for the continuous response
variable and by a chi-squared test for the categorical response variable. The predictor variable
with the smallest (Bonferroni adjusted) p-value, i.e., the predictor variable that will yield the most
signi�cant split will be considered for the next split in the tree. If the smallest p-value for any
predictor is greater than some pre-speci�ed value of alpha, then no further splits will be performed,
and the respective node will become a terminal node.

2

The Bonferroni Adjusted P -value

The Bonferroni correction helps to protect against in�ation of the probability of Type I error when
performing multiple simultaneous hypotheses testing (it, however, in�ates the probability of Type
II error). Suppose we would like to test simultaneously k pairs of hypotheses and maintain the
probability of Type I error equal to α. The probability of Type I error is then the probability
that at least one test shows signi�cance when no signi�cance exists. That is, at least one test
statistic falls in the (adjusted) rejection region. The complement of that is that all test statistics
lie in the (adjusted) acceptance region, and this translates into the identity: 1 − α = P(all test
statistics are in the (adjusted) acceptance region) = (1 − αadjusted)

k, assuming that tests are in-
dependent. From here, the Bonferonni adjusted p-value is a p-value that should be compared to
αadjusted = 1 − (1 − α)(1/k) ≈ α/k. For example, if k = 5 and �ve simultaneous hypothesis test-
ings are carried out, then each p-value should be compared not to α = 0.05 but α/k = 0.05/5 = 0.01.

Remark. Note that with the CHAID splitting criterion, each internal node can have more than
two emanating branches, that is, a tree is not limited to binary splitting.

Historical Note. The CHAID splitting criterion was proposed by G.V Kass in "An Exploratory
Technique for Investigating Large Quantities of Categorical Data", Journal of the Royal Statistical
Society, Series C (Applied Statistics), Vol. 29, No. 2 (1980), pp. 119-127.

The Cost-complexity Pruning Technique

For a decision tree, the complexity of the tree T is de�ned as |T |, the number of terminal nodes
(leaves). The cost of a decision tree, denoted by R(T), is the RSS for regression trees and the
misclassi�cation rate for classi�cation trees. The cost-complexity (CC) measure is de�ned as
CC(T) = R(T) + α · |T |, a linear combination of the cost and complexity, where the term α · |T |
is called the complexity penalty term. The parameter α is known as the cost-complexity
parameter (ccp).

The cost-complexity pruning algorithm (also known as the minimal cost-complexity pruning
algorithm) works as follows. The cost-complexity of a single node is CC(t) = R(t) +α. The branch
Tt is de�ned to be a tree with t as the root node. In general, the cost of a node is greater than the
sum of the costs of its terminal nodes, that is, R(Tt) < R(t). However, the cost-complexity measure
of a node t and its branch Tt can be made equal, depending on the value of α. We de�ne the ef-
fective α of a node to be the value where CC(Tt) = CC(t), or R(Tt)+αeff |Tt| = R(t)+αeff , giving

αeff =
R(t)−R(Tt)

|Tt| − 1
.

An internal node with the smallest value of αeff is the weakest link and will be pruned. The
pruning process continues until there are no more e�ective α's smaller than a pre-speci�ed value.
More about this pruning algorithm will be explained in the example below.

3

Historical Note. The cost-complexity pruning algorithm was �rst described in the book "Classi-
�cation and Regression Trees" by Breiman, L., Friedman, J., Olshen, R. and Stone, C, Chapman
and Hall, Wadsworth, New York, 1984.

Remark. When data are not distributed in a linear pattern, �tting a regression tree has a clear
advantage over a linear regression model as illustrated below.

Example. The data set "housing_data.csv" contains variables aggregated by residential neighbor-
hoods: housing median age, total number of rooms, total number of bedrooms, total population,
total number of households, median income, ocean proximity, and median house value. There are
2842 rows in this data set. We model median house value using a regression tree with the RSS
splitting and cost-complexity pruning. First, we split the data into 80% training and 20% testing
sets. Then we run a full regression tree (without pruning). We use the RSS splitting criterion. Note
that since the tree is large, we need to specify a seed. The RSS splitting algorithm is deterministic,
but if two splits are equivalent, the order of splits is carried out at random.

In SAS:

4

proc import out=housing datafile="./housing_data.csv" dbms=csv replace;

run;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=housing rate=0.8 seed=677530

out=housing outall method=srs;

run;

/*RSS SPLITTING CRITERION - FULL TREE*/

proc hpsplit data=housing seed=304576;

class ocean_proximity;

model median_house_value = housing_median_age total_rooms total_bedrooms

population households median_income ocean_proximity;

grow RSS;

partition rolevar=selected(train="1");

run;

5

As part of the output, SAS produces a cost-complexity analysis plot. In this plot, the Average ASE
(average squared error= RSS/n where n is the sample size of the training set) is plotted against
the number of leaves in a tree (top scale on the x-axis). The additional scale on the x-axis (at the
bottom) is for the cost-complexity parameter. To compute Average ASE, SAS does (by default)
10-fold cross-validation by randomly dividing the training set into 10 equal parts and �tting
the tree iteratively 10 times, every time holding 1/10th of the data as a validation set. ASE is
computed for each of the 10 validation sets and then averaged.

As suggested by the plot, the global minimum corresponds to 25 leaf nodes, but this is obviously
a very large tree (typically with very poor predictive accuracy). As suggested by Breiman, et. al
(1984), it is more reasonable to prune a tree to the number of leaves corresponding to the smallest
value of Average ASE below one standard error. The standard error is a standard deviation of
the 10 ASE values computed during the cross-validation process. On the plot, the 1-SE line is the
horizontal line, and the �rst value below it corresponds to 5 leaves. Next, we �t a pruned tree with
5 leaf nodes, using the cost-complexity pruning method.

/*RSS SPLITTING AND COST-COMPLEXITY PRUNING*/

proc hpsplit data=housing;

class ocean_proximity;

model median_house_value = housing_median_age total_rooms total_bedrooms

population households median_income ocean_proximity;

grow RSS;

prune costcomplexity(leaves=5);

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

Studying the tree on the next page, we can see that all the splits are done on two predictors only.
The �rst split is done with respect to the median income (<4.586, 1727 rows vs. >=4.586, 547),
then the latter node is split on the median income again (<6.322, 367 rows vs. >=6.322, 180 rows),
and the former node is split on ocean proximity (inland and near ocean, 945 rows vs. others, 782
rows). The latter node is also split on median income (<2.706, 320 rows vs. >=2.706, 462 rows).
There are 5 leaf nodes in this pruned tree.

6

7

Further, the data set "predicted" contains predicted responses for both training and testing data
(identi�ed by the variable "selected"). We limit the data to the testing set and compute proportions
of predictions within 10%, 15%, and 20% of the observed values.

/*COMPUTING PREDICTION ACCURACY FOR TESTING DATA*/

data test;

set predicted;

if(selected="0");

keep _leaf_ median_house_value P_median_house_value;

run;

data accuracy;

set test;

if(abs(median_house_value-P_median_house_value)<0.10*median_house_value)

then ind10=1; else ind10=0;

if(abs(median_house_value-P_median_house_value)<0.15*median_house_value)

then ind15=1; else ind15=0;

if(abs(median_house_value-P_median_house_value)<0.20*median_house_value)

then ind20=1; else ind20=0;

run;

proc sql;

select mean(ind10) as accuracy10, mean(ind15) as accuracy15,

mean(ind20) as accuracy20

from accuracy;

quit;

From here, we can see that roughly 27.5% of predictions are within 10%, 36.3% are within 15%,
and 47.2% are within 20% of the true observed values in the testing data set.

Now we grow a full regression tree using the CHAID splitting criterion. Note that a seed has to be
speci�ed because the algorithm involves random segmentation.

/*CHAID SPLITTING CRITERION - FULL TREE*/

8

proc hpsplit data=housing seed=501231;

class ocean_proximity;

model median_house_value = housing_median_age total_rooms total_bedrooms

population households median_income ocean_proximity;

grow CHAID;

partition rolevar=selected(train="1");

run;

As suggested by the graph, the number of leaves in the pruned tree is 5 (on the 1-SE line). We
run the following statement and obtain exactly the same regression tree as with the RSS splitting
criterion.

/*CHAID SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=housing seed=501231;

9

class ocean_proximity;

model median_house_value = housing_median_age total_rooms total_bedrooms

population households median_income ocean_proximity;

grow CHAID;

prune costcomplexity (leaves=5);

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

10

11

Next, we �t the regression tree with the RSS splitting criteria, using R. We prune the tree to 5 leaves.

In R:
housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(105388)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]

#FITTING FULL REGRESSION TREE WITH RSS SPLITTING
install.packages("rpart")
library(rpart) #recursive partitioning and regression
reg.tree.full<- rpart(median_house_value∼ housing_median_age + total_rooms + total_bedrooms
+ population + households + median_income + ocean_proximity, data=train, method="anova",
xval=10, cp=0) #xval=number of cross-validations

printcp(reg.tree.full)

CP nsplit rel error xerror xstd

1 4.0377e-01 0 1.00000 1.00114 0.038634

2 1.1710e-01 1 0.59623 0.61587 0.024985

3 1.0159e-01 2 0.47913 0.48931 0.022913

4 2.8290e-02 3 0.37754 0.39223 0.019864

5 2.5166e-02 4 0.34925 0.37005 0.020814

6 1.5738e-02 5 0.32408 0.34350 0.020419

7 1.4741e-02 6 0.30834 0.32689 0.020259

8 7.0612e-03 7 0.29360 0.31084 0.019927

9 4.4519e-03 8 0.28654 0.30528 0.019780

10 4.3618e-03 9 0.28209 0.30798 0.020052

#FITTING REGRESSION TREE WITH RSS SPLITTING AND COST-COMPLEXITY PRUN-
ING
reg.tree.RSS<- rpart(median_house_value∼ housing_median_age + total_rooms + total_bedrooms
+ population + households + median_income + ocean_proximity, data=train, method="anova",
cp=0.026) #pruned tree with 4 splits and 5 leaves

#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(reg.tree.RSS, type=3)

12

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
P_median_house_value<- predict(reg.tree.RSS, newdata=test)

#accuracy within 10%
accuracy10<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.10*test$median_house_value,1,0)
print(mean(accuracy10))
0.2422018
#accuracy within 15%
accuracy15<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.15*test$median_house_value,1,0)
print(mean(accuracy15))
0.346789
#accuracy within 20%
accuracy20<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.20*test$median_house_value,1,0)
print(mean(accuracy20))
0.440367

Note that this tree is similar to the one produced by SAS, and the proportions of accurate predic-

13

tions are close to the ones in SAS. Now we �t a regression tree with �ve terminal nodes based on
the CHAID splitting criterion.

#FITTING REGRESSION TREEWITH CHAID SPLITTING AND COST-COMPLEXITY PRUN-
ING
install.packages("CHAID", repos="http://R-Forge.R-project.org", type="source")

#BINNING CONTINUOUS PREDICTOR VARIABLES
install.packages("dplyr")
library(dplyr)
housing.data<- mutate(housing.data, housing_median_age_cat=ntile(housing_median_age,10),
total_rooms_cat=ntile(total_rooms,10), total_bedrooms_cat=ntile(total_bedrooms,10), popu-
lation_cat=ntile(population,10), households_cat=ntile(households,10),
median_income_cat=ntile(median_income,10), median_house_value_cat=ntile(median_house_value,10))

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(105388)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]

library(CHAID)

reg.tree.CHAID<- chaid(as.factor(median_house_value_cat)∼ as.factor(housing_median_age_cat)
+ as.factor(total_rooms_cat) + as.factor(total_bedrooms_cat) + as.factor(population_cat) +
as.factor(households_cat) + as.factor(median_income_cat) + as.factor(ocean_proximity), data=train,
control=chaid_control(maxheight=4))

plot(reg.tree.CHAID, type="simple")

14

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
predclass<- as.numeric(predict(reg.tree.CHAID, newdata=test))
test<- cbind(test,predclass)

#computing predicted values (mean values per decile in the training set)

aggr.data<- aggregate(train$median_house_value, by=list(train$median_house_value_cat), FUN=mean)
#combining observed and predicted values in the testing set

15

aggr.data$predclass<- aggr.data$Group.1
aggr.data$P_median_house_value<- aggr.data$x
test<- left_join(test, aggr.data, by='predclass')

#accuracy within 10%
accuracy10<-
ifelse(abs(test$median_house_value-test$P_median_house_value) <0.10*test$median_house_value,1,0)
print(mean(accuracy10))
0.2880734
#accuracy within 15%
accuracy15<-
ifelse(abs(test$median_house_value-test$P_median_house_value) <0.15*test$median_house_value,1,0)
print(mean(accuracy15))
0.4091743
#accuracy within 20%
accuracy20<-
ifelse(abs(test$median_house_value-test$P_median_house_value) <0.20*test$median_house_value,1,0)
print(mean(accuracy20))
0.5045872

Finally, we write a Python code to �t the regression tree using RSS and CHAID splitting criteria.

In Python:

16

17

18

0.2671353251318102

0.36731107205623903

0.46045694200351495

For the CHAID splitting criterion, we �rst split the response variable into deciles and then turn the
deciles (0, ..., 9) into nominal classes (0th, ..., 9th). The tree is �tted using the Chefboost package,
which �ts CHAID trees with nominal response only.

19

The �tted tree is not plotted but stored in the /outputs/rules/rules.py �le. Here are the deci-
sion rules for the �tted tree:

def findDecision(obj): #obj[0]: housing_median_age, obj[1]: total_rooms, obj[2]: total_bedrooms, obj[3]: population, obj[4]: households, obj[5]: median_income, obj[6]: ocean_proximity

{"feature": "median_income", "instances": 2273, "metric_value": 123.2024, "depth": 1}

if obj[5]<=3.553185833699958:

{"feature": "ocean_proximity", "instances": 1371, "metric_value": 110.1406, "depth": 2}

if obj[6]<=2.0:

{"feature": "housing_median_age", "instances": 764, "metric_value": 109.5716, "depth": 3}

if obj[0]<=26.785340314136125:

{"feature": "total_rooms", "instances": 406, "metric_value": 72.5045, "depth": 4}

if obj[1]<=2437.9162561576354:

{"feature": "population", "instances": 252, "metric_value": 54.3406, "depth": 5}

if obj[3]<=1262.9637320858756:

{"feature": "households", "instances": 218, "metric_value": 44.3203, "depth": 6}

20

if obj[4]>266.10091743119267:

{"feature": "total_bedrooms", "instances": 118, "metric_value": 25.8022, "depth": 7}

if obj[2]<=480.1384663358453:

return '2nd'

elif obj[2]>480.1384663358453:

return '1st'

else: return '1st'

elif obj[4]<=266.10091743119267:

{"feature": "total_bedrooms", "instances": 100, "metric_value": 25.441, "depth": 7}

if obj[2]<=415.051670879008:

return '0th'

elif obj[2]>415.051670879008:

return '3rd'

else: return '3rd'

else: return '0th'

elif obj[3]>1262.9637320858756:

{"feature": "households", "instances": 34, "metric_value": 17.5386, "depth": 6}

if obj[4]<=411.05882352941177:

{"feature": "total_bedrooms", "instances": 21, "metric_value": 10.9193, "depth": 7}

if obj[2]>358.0:

return '0th'

elif obj[2]<=358.0:

return '0th'

else: return '0th'

elif obj[4]>411.05882352941177:

{"feature": "total_bedrooms", "instances": 13, "metric_value": 7.8621, "depth": 7}

if obj[2]<=490.0:

return '1st'

elif obj[2]>490.0:

return '0th'

else: return '0th'

else: return '0th'

else: return '0th'

*** LINES OMITTED ***

if obj[2]>1294.0:

{"feature": "population", "instances": 5, "metric_value": 2.8284, "depth": 7}

if obj[3]>3283.0:

return '9th'

elif obj[3]<=3283.0:

return '9th'

21

else: return '9th'

elif obj[2]<=1294.0:

return '9th'

else: return '9th'

else: return '9th'

else: return '9th'

else: return '9th'

else: return '9th'

else: return '9th'

0.20210896309314588

0.3022847100175747

0.39015817223198596

2

22

Classi�cation Tree

A classi�cation tree is a decision tree for a categorical (or even binary) target (response) variable.
In classi�cation trees, a natural alternative to the RSS is the classi�cation error rate, de�ned
as the fraction of observations in a region that do not belong to the most common class (that is,
are misclassi�ed by the tree). Two splitting methods are usually used, one is based on the Gini
impurity index and the other is based on entropy.

Gini Impurity Index

The following Gini impurity index is commonly used in practice: G =
K∑
k=1

pk(1− pk) where pk is

the proportion of observations in the kth class (that is, the probability of randomly picking a data
point in the kth class).

Historical Note. The Gini impurity index is named after an Italian statistician Corrado Gini who
proposed the idea in his 1912 paper "Variability and Mutability".

Example. Suppose we observe 10 data points, 5 of which we color blue and the other 5 we color
green (see the picture). Suppose we randomly pick a data point and then randomly classify it as
blue or green according to the class distribution in the data set. That is, we classify it as blue
(or green) with probability 5/10 = 1/2, since we have 5 data points of each color. What's the
probability we classify our data point incorrectly?

P(pick blue, classify blue) = (1/2)(1/2) = 1/4,

P(pick blue, classify green) = (1/2)(1/2) = 1/4,

P(pick green, classify blue) = (1/2)(1/2) = 1/4,

P(pick green, classify green) = (1/2)(1/2) = 1/4.

Therefore, the probability of misclassi�cation is P(pick blue, classify green) +P(pick green, classify blue)
= 1/4 + 1/4 = 1/2 = 0.5.

The Gini impurity index is computed as G = P(pick blue)
(
1 − P(pick blue)

)
+ P(pick green)

(
1 −

P(pick green)
)

= (0.5)(1−0.5)+(0.5)(1−0.5) = 0.25+0.25 = 0.5 and coincides with the probability
of misclassi�cation.

If we now make a "perfect" vertical split at X = 2 (see the �gure below), then 100% of blue dots will
be classi�ed correctly as blue and 100% of green dots will be classi�ed correctly as green, so the Gini
impurity index for the region on the left is Gleft = P(pick blue)

(
1−P(pick blue)

)
+P(pick green)

(
1−

23

P(pick green)
)

= (1)(1− 1) + (0)(1− 0) = 0. The Gini index for the region on the right is Gright =
P(pick blue)

(
1 − P(pick blue)

)
+ P(pick green)

(
1 − P(pick green)

)
= (0)(1 − 0) + (1)(1 − 1) = 0.

Thus, the "perfect" split turned a data set with a 0.5 impurity into two branches with zero impurity,
which is the lowest and the best possible impurity.

To illustrate further, consider now an "imperfect" split at X = 1.5 where one blue data point falls
into the region on the right (as seen in the picture below). The region on the left has only blue data
points, so we know that Gleft = 0. The region on the right has 1 blue and 5 green data points, and
hence, Gright = (1/6)(1− 1/6) + (5/6)(1− 5/6) = 10/36 = 0.2778.

24

Finally, the quality of the split is determined by weighting the impurity of each region (branch)
by how many data points it has. Since the region on the left has 4 data points and the region on
the right has 6, we get (0.4)(0) + (0.6)(0.2778) = 0.1667. Thus, the amount of impurity that is
"removed" by this split is 0.5− 0.1667 = 0.3333. This value is called the Gini gain. The Gini gain
for the "perfect" split is 0.5 − ((0.5)(0) + (0.5)(0)) = 0.5. When training a decision tree, the best
split is chosen by maximizing the Gini gain. The larger the Gini gain, the better the split. 2

Cross-entropy Loss Function

An alternative to the Gini impurity index is the cross-entropy (or cross-entropy loss function
or Shannon's entropy) de�ned by the formula:

E =

{
−
∑K

k=1 pk ln(pk), if 0 < pk ≤ 1,

0, if pk = 0.

Historical Note. Claude Shannon (1916-2001) was an American mathematician, electrical engi-
neer, and cryptographer and is known as a "father of information theory".

Example. In our example, the cross-entropy for the entire data set is E = −(0.5) ln(0.5) −
(0.5) ln(0.5) = − ln(0.5) = 0.6931. For the "perfect" split, the cross-entropy for the left region
is Eleft = −(1) ln(1) − 0 = 0, and so it is for the right region: Eright = 0 − (1) ln(1) = 0.
For the "imperfect" split, the cross-entropy for the left region is Eleft = −(1) ln(1) − 0 = 0
and that for the right region is Eright = −(1/6) ln(1/6) − (5/6) ln(5/6) = 0.4506. A split is
better if the reduction in the cross-entropy is larger. For the "perfect" split, the cross-entropy
is reduced by 0.6931 − [(0.4)(0) + (0.6)(0)] = 0.6931, whereas for the "imperfect split", it is
0.6931− [(0.4)(0) + (0.6)(0.4506)] = 0.4227 < 0.6931, so the "perfect" split wins.

With the cross-entropy loss function, the amount of impurity that is "removed" by a split is termed
the information gain. The splitting algorithm that uses entropy and information gain as the met-
ric is called the Iterative Dichotomiser 3 (ID3) algorithm. A successor of the ID3 algorithm
(a recognized improved version of ID3) is C4.5 algorithm that uses entropy and gain ratio as the
measures. The gain ratio is de�ned by the ratio of information gain and split information. How
to calculate split information is easier to explain by example.

Example. In the above example, the "imperfect" split can be summarized as follows:

Split Blue Green Total
left 4 0 4
right 1 5 6

Split Information= − 4

10
ln

4

10
− 6

10
ln

6

10
= 0.673012, and Gain Ratio=Information Gain/Split

25

Information= 0.4227/0.673012 = 0.628072. Gain ratios are compared for all candidate variables,
and the one with the largest value is selected for the next split. Note that the gain ratio penalizes
having too many branches that a split would result in (that is, splitting in a high number of branches
results in high information gain, but the split information also increases, so the gain ratio reduces
the bias). 2

Historical Note. The ID3 algorithm was invented by John Ross Quinlan in 1979, and in 1993 he
published "C4.5 Programs for Machine Learning" where he introduced the C4.5 algorithm.

Remark. Note that at any given node, there may be a number of splits on di�erent variables, all
of which give almost the same decrease in impurity. Since data are noisy, the choice between com-
peting splits is almost random. However, choosing an alternative split that is almost as good will
lead to a di�erent evolution of the tree from that node downward. That's why when a classi�cation
tree is developed, a seed should be speci�ed for reproducibility of results.

Example. The data �le �pneumonia_data.csv� contains data on individuals' age, gender, an indi-
cator of tobacco use, PM2.5 measurement for the place of residence (atmospheric particulate matter
that has a diameter of fewer than 2.5 micrometers, in micro grams per cubic meter), and an indi-
cator of pneumonia. We model pneumonia diagnosis using binary classi�cation trees with the Gini,
entropy, and CHAID splitting criteria.

In SAS:

proc import out=pneumonia datafile="./pneumonia_data.csv"

dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=pneumonia rate=0.8 seed=6132208

out=pneumonia outall method=srs;

run;

/*GINI SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=pneumonia maxdepth=4;

class pneumonia gender tobacco_use;

model pneumonia(event="yes")= age gender tobacco_use PM2_5;

grow gini;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

26

Further, we want to measure the performance of the tree based on the proportion of observations in
the testing set that are predicted correctly. The data set predicted contains predicted probabili-
ties of pneumonia for both training and testing sets (indexed by the variable selected) (see below).

proc print data=predicted (obs=10);

run;

27

We introduce a cuto�, a value between 0 and 1, such that if a predicted probability of pneumonia
is above it, we assume that pneumonia is predicted as present, otherwise absent. We search for an
optimal value of cuto� that gives the highest correctly predicted proportion.

/*COMPUTING PREDICTION ACCURACY FOR TESTING DATA*/

data test;

set predicted;

if(selected="0");

keep pneumonia P_pneumoniayes;

run;

data cutoffs;

set test;

do i=1 to 99;

tp=(P_pneumoniayes > 0.01*i and pneumonia="yes");

tn=(P_pneumoniayes < 0.01*i and pneumonia="no");

output;

end;

run;

proc sql;

create table rates as

select i, sum(tp+tn)/count(*) as trueclassrate

from cutoffs

group by i;

28

select 0.01*i as cutoff, trueclassrate

from rates

having trueclassrate=max(trueclassrate);

quit;

...

From this output, we can see that the largest proportion of correct predictions (80.5797%) is achieved
for any cuto� between 0.49 and 0.79.

Moving forward, we �t binary classi�cation trees using the entropy and CHAID splitting criteria.
We use the cost-complexity pruning algorithm. The trees come out to be the same as the one �tting
using the Gini impurity index.

29

/*ENTROPY SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=pneumonia maxdepth=4;

class pneumonia gender tobacco_use;

model pneumonia(event="yes")= age gender tobacco_use PM2_5;

grow entropy;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

/*CHAID SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=pneumonia maxdepth=4;

class pneumonia gender tobacco_use;

model pneumonia(event="yes")= age gender

30

tobacco_use PM2_5;

grow CHAID;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

In R:

pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(283605)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))

31

train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

#FITTING PRUNED BINARY TREE WITH GINI SPLITTING
library(rpart)
tree.gini<- rpart(pneumonia∼ age + gender + tobacco_use + PM2_5, data=train, method="class",
parms=list(split="Gini"), maxdepth=4)

library(rpart.plot)
rpart.plot(tree.gini, type=3)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.values<- predict(tree.gini, test)
test<- cbind(test,pred.values)

32

tp<- matrix(NA, nrow=nrow(test), ncol=99)
tn<- matrix(NA, nrow=nrow(test), ncol=99)

for (i in 1:99) {
tp[,i]<- ifelse(test$pneumonia=="yes" & test$yes>0.01*i,1,0)
tn[,i]<- ifelse(test$pneumonia=="no" & test$yes<=0.01*i,1,0)

}

trueclassrate<- matrix(NA, nrow=99, ncol=2)
for (i in 1:99){

trueclassrate[i,1]<- 0.01*i
trueclassrate[i,2]<- sum(tp[,i]+tn[,i])/nrow(test)

}

print(trueclassrate[which(trueclassrate[,2]==max(trueclassrate[,2])),])

[,1] [,2]

[1,] 0.30 0.7886905

[2,] 0.31 0.7886905

[3,] 0.32 0.7886905

[4,] 0.33 0.7886905

[5,] 0.34 0.7886905

[6,] 0.35 0.7886905

[7,] 0.36 0.7886905

[8,] 0.37 0.7886905

[9,] 0.38 0.7886905

[10,] 0.39 0.7886905

[11,] 0.40 0.7886905

[12,] 0.41 0.7886905

[13,] 0.42 0.7886905

[14,] 0.43 0.7886905

[15,] 0.44 0.7886905

[16,] 0.45 0.7886905

The prediction accuracy for this tree is 78.86905%, which corresponds to any cuto� between 0.30
and 0.45. Next, we �t a binary tree using the entropy splitting criterion. The tree is identical to
the one produced by the Gini criterion.

#FITTING PRUNED BINARY TREE WITH ENTROPY SPLITTING
tree.entropy<- rpart(pneumonia∼ age + gender + tobacco_use + PM2_5, data=train, method="class",
parms=list(split="entropy"), maxdepth=4)

33

rpart.plot(tree.entropy, type=3)

Finally, we produce a binary classi�cation tree based on the CHAID splitting criterion.

#FITTING PRUNED BINARY TREE WITH CHAID SPLITTING
#BINNING CONTINUOUS PREDICTOR VARIABLES
library(dplyr)

pneumonia.data<- mutate(pneumonia.data, age.cat=ntile(age,10), PM2_5.cat=ntile(PM2_5,10))

#CREATING INDICATORS FOR CATEGORICAL VARIABLES
pneumonia.data$male<- ifelse(pneumonia.data$gender=="M",1,0)
pneumonia.data$tobacco.yes<- ifelse(pneumonia.data$tobacco_use=="yes",1,0)

34

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(283605)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

#FITTING BINARY CLASSIFICATION TREE
library(CHAID)
tree.CHAID<- chaid(as.factor(pneumonia)∼ as.factor(age.cat) + as.factor(male) + as.factor(tobacco.yes)
+ as.factor(PM2_5.cat), data=train, control=chaid_control(maxheight=3))

#PLOTTING FITTED TREE
plot(tree.CHAID, type="simple")

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA

35

pred.pneumonia<- predict(tree.CHAID, newdata=test)
test<- cbind(test,pred.pneumonia)

truepred<- c()
n<- nrow(test)
for (i in 1:n)

truepred[i]<- ifelse(test$pneumonia[i]==test$pred.pneumonia[i],1,0)

print(truepredrate<- sum(truepred)/length(truepred))
0.8035714

Note that the predicted values are yes/no, not probabilities. This tree gives 80.35714% correct
predictions.

Next, we employ Python to build binary classi�cation trees with the Gini and entropy slitting cri-
teria.

In Python:

36

37

38

trueclassrate cutoff

34 0.728324 0.35

35 0.728324 0.36

36 0.728324 0.37

37 0.728324 0.38

38 0.728324 0.39

39 0.728324 0.40

40 0.728324 0.41

41 0.728324 0.42

42 0.728324 0.43

43 0.728324 0.44

44 0.728324 0.45

45 0.728324 0.46

46 0.728324 0.47

47 0.728324 0.48

48 0.728324 0.49

49 0.728324 0.50

50 0.728324 0.51

51 0.728324 0.52

52 0.728324 0.53

39

53 0.728324 0.54

54 0.728324 0.55

55 0.728324 0.56

56 0.728324 0.57

57 0.728324 0.58

58 0.728324 0.59

59 0.728324 0.60

60 0.728324 0.61

61 0.728324 0.62

The true classi�cation rate is 72.8324%, which corresponds to any cuto� between 0.35 and 0.62.

40

trueclassrate cutoff

33 0.728324 0.34

34 0.728324 0.35

35 0.728324 0.36

36 0.728324 0.37

37 0.728324 0.38

38 0.728324 0.39

39 0.728324 0.40

40 0.728324 0.41

41 0.728324 0.42

42 0.728324 0.43

43 0.728324 0.44

44 0.728324 0.45

The true classi�cation rate this three is also 72.8324%, which corresponds to any cuto� between
0.34 and 0.45.

Finally, we use Chefboost decision tree framework in Python to �t a binary classi�cation tree with
the CHAID splitting criterion.

41

The �tted tree is not plotted but stored in the /outputs/rules/rules.py �le. Here are the deci-
sion rules for the �tted tree:

def findDecision(obj): #obj[0]: gender, obj[1]: age, obj[2]: tobacco_use, obj[3]: PM2_5

{"feature": "tobacco_use", "instances": 1381, "metric_value": 28.9752, "depth": 1}

if obj[2]<=0.0:

{"feature": "PM2_5", "instances": 1052, "metric_value": 35.0779, "depth": 2}

if obj[3]>16.381331614375146:

{"feature": "age", "instances": 838, "metric_value": 24.3317, "depth": 3}

if obj[1]>31.85100857903719:

{"feature": "gender", "instances": 674, "metric_value": 16.9648, "depth": 4}

if obj[0]>0.0:

return 'no'

elif obj[0]<=0.0:

return 'no'

else: return 'no'

elif obj[1]<=31.85100857903719:

42

{"feature": "gender", "instances": 164, "metric_value": 14.0331, "depth": 4}

if obj[0]>0.0:

return 'no'

elif obj[0]<=0.0:

return 'no'

else: return 'no'

else: return 'no'

elif obj[3]<=16.381331614375146:

{"feature": "age", "instances": 214, "metric_value": 25.7088, "depth": 3}

if obj[1]<=50.52336448598131:

{"feature": "gender", "instances": 109, "metric_value": 17.447, "depth": 4}

if obj[0]>0.0:

return 'no'

elif obj[0]<=0.0:

return 'no'

else: return 'no'

elif obj[1]>50.52336448598131:

{"feature": "gender", "instances": 105, "metric_value": 17.3185, "depth": 4}

if obj[0]>0.0:

return 'no'

elif obj[0]<=0.0:

return 'no'

else: return 'no'

else: return 'no'

else: return 'no'

elif obj[2]>0.0:

{"feature": "gender", "instances": 329, "metric_value": 17.9638, "depth": 2}

if obj[0]<=0.0:

{"feature": "PM2_5", "instances": 175, "metric_value": 17.984, "depth": 3}

if obj[3]>26.570514285714314:

{"feature": "age", "instances": 89, "metric_value": 13.2291, "depth": 4}

if obj[1]>41.59550561797753:

return 'yes'

elif obj[1]<=41.59550561797753:

return 'yes'

else: return 'yes'

elif obj[3]<=26.570514285714314:

{"feature": "age", "instances": 86, "metric_value": 11.8925, "depth": 4}

if obj[1]>43.31395348837209:

return 'yes'

elif obj[1]<=43.31395348837209:

return 'yes'

43

else: return 'yes'

else: return 'yes'

elif obj[0]>0.0:

{"feature": "PM2_5", "instances": 154, "metric_value": 9.3417, "depth": 3}

if obj[3]>16.351659726119824:

{"feature": "age", "instances": 120, "metric_value": 4.2591, "depth": 4}

if obj[1]<=62.55213873641577:

return 'no'

elif obj[1]>62.55213873641577:

return 'yes'

else: return 'yes'

elif obj[3]<=16.351659726119824:

{"feature": "age", "instances": 34, "metric_value": 10.2831, "depth": 4}

if obj[1]>46.470588235294116:

return 'no'

elif obj[1]<=46.470588235294116:

return 'no'

else: return 'no'

else: return 'no'

else: return 'no'

else: return 'yes'

We use the built tree for prediction on the testing set.

44

0.7052023121387283

About 70.52% of observations in the testing set are predicted correctly by this classi�cation tree. 2

45

CONFUSION MATRIX

For a binary classi�cation tree, we used the correct classi�cation rate as a measure of model per-
formance. Traditionally, other quantities are also used. We de�ne them below. Suppose, hypothet-
ically speaking, of 100 observations in a testing set, 50 yes's are predicted correctly, 10 yes's are
predicted incorrectly, 35 no's are predicted correctly, and 5 no's are predicted incorrectly. We sum-
marize this information in the following table (called confusion matrix or classi�cation matrix):

True "Yes" True "No" Total
Predicted "Yes" 50 5 55
Predicted "No" 10 35 45

Total 60 40 100

For simplicity of notation, correctly predicted yes's are called "true positive" (TP), incorrectly pre-
dicted yes's are called "false negative" (FN), correctly predicted no's are called "true negative"
(TN), and incorrectly predicted no's are called "false positive" (FP).

Example. In our example, TP = 50, FN = 10, TN = 35, and FP = 5. 2

The numbers of cases in these categories are used to calculate various measures of model �t:

• Accuracy (or Correct Classi�cation Rate): Overall, how often is the classi�er correct?

(TP + TN)/Total = (TP + TN)/(TP + TN + FP + FN) = (50 + 35)/100 = 0.85

• Misclassi�cation Rate: Overall, how often is it wrong?

(FP +FN)/Total = (FP +FN)/(TP +TN+FP +FN) = (5+10)/100 = 0.15 = 1−Accuracy

• True Positive Rate (or Sensitivity or Recall): When it's actually yes, how often does
it predict yes?

TP/True yes = TP/(TP + FN) = 50/60 = 0.8333

• False Negative Rate (FNR): When it's actually yes, how often does it predict no?

FN/True yes = FN/(TP + FN) = 10/60 = 0.1667 = 1− Sensitivity

• True Negative Rate (or Speci�city): When it's actually no, how often does it predict no?

TN/True no = TN/(FP + TN) = 35/40 = 0.875

• False Positive Rate (FPR): When it's actually no, how often does it predict yes?

46

FP/True no = FP/(FP + TN) = 5/40 = 0.125 = 1− Specificity

• Positive Predictive Value (PPV, or Precision): When it predicts yes, how often is it
correct?

TP/Predicted yes = TP/(TP + FP) = 50/55 = 0.9091

• Negative Predictive Value (NPV): When it predicts no, how often is it correct?

TN/Predicted no = TN/(FN + TN) = 35/45 = 0.7778

These de�nitions can be presented in a theoretical confusion matrix:

Another performance measure that is often utilized is the F1-score. It combines recall and precision
into a single measure.

• F1-score: It is a harmonic mean of sensitivity and precision and can be calculated as follows:

47

F1-score =
2

1
sensitivity

+ 1
precision

=
2

TP+FN
TP

+ TP+FP
TP

=
2TP

2TP + FN + FP
=

(2)(50)

(2)(50) + 10 + 5
=

100

115
= 0.869565.

Example. Going back to the pneumonia example, we take the binary classi�cation tree with Gini
splitting and cost-complexity pruning and compute the confusion matrix and the performance mea-
sures for the test data, using 0.5 as the cuto�.

In SAS:

proc import out=pneumonia datafile="./pneumonia_data.csv"

dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=pneumonia rate=0.8 seed=6132208

out=pneumonia outall method=srs;

run;

/*GINI SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=pneumonia maxdepth=4;

class pneumonia gender tobacco_use;

model pneumonia(event="yes")= age gender tobacco_use PM2_5;

grow gini;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

/*COMPUTING CONFUSION MATRIX AND PERFORMANCE MEASURES FOR TESTING SET*/

data test;

set predicted;

if(selected="0");

tp=(P_pneumoniayes > 0.5 and pneumonia="yes");

fp=(P_pneumoniayes > 0.5 and pneumonia="no");

tn=(P_pneumoniano > 0.5 and pneumonia="no");

fn=(P_pneumoniano > 0.5 and pneumonia="yes");

run;

48

proc sql;

create table confusion as

select sum(tp) as tp, sum(fp) as fp, sum(tn) as tn,

sum(fn) as fn, count(*) as total

from test;

select * from confusion;

quit;

proc sql;

select (tp+tn)/total as accuracy, (fp+fn)/total as

misclassrate, tp/(tp+fn) as sensitivity,

fn/(tp+fn) as FNR, tn/(fp+tn) as specificity,

fp/(fp+tn) as FPR, tp/(tp+fp) as precision,

tn/(fn+tn) as NPV, 2*tp/(2*tp+fn+fp) as F1score

from confusion;

quit;

In R:

pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(283605)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

49

#FITTING PRUNED BINARY TREE WITH GINI SPLITTING
library(rpart)
tree.gini<- rpart(pneumonia∼ age + gender + tobacco_use + PM2_5, data=train, method="class",
parms=list(split="Gini"), maxdepth=4)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.values<- predict(tree.gini, test)
test<- cbind(test,pred.values)

tp<- c()
fp<- c()
tn<- c()
fn<- c()

total<- nrow(test)
for (i in 1:total){

tp[i]<- ifelse(test$yes[i]>0.5 & test$pneumonia[i]=="yes",1,0)
fp[i]<- ifelse(test$yes[i]>0.5 & test$pneumonia[i]=="no",1,0)
tn[i]<- ifelse(test$no[i]>0.5 & test$pneumonia[i]=="no",1,0)
fn[i]<- ifelse(test$no[i]>0.5 & test$pneumonia[i]=="yes",1,0)

}

print(tp<- sum(tp))

56

print(fp<- sum(fp))

8

print(tn<- sum(tn))

206

print(fn<- sum(fn))

66

print(total)

336

50

print(accuracy<- (tp+tn)/total)

0.7797619

print(misclassrate<- (fp+fn)/total)

0.2202381

print(sensitivity<- tp/(tp+fn))

0.4590164

print(FNR<- fn/(tp+fn))

0.5409836

print(speci�city<- tn/(fp+tn))

0.9626168

print(FPR<- fp/(fp+tn))

0.03738318

print(precision<- tp/(tp+fp))

0.875

print(NPV<- tn/(fn+tn))

0.7573529

print(F1score<- 2*tp/(2*tp+fn+fp))

0.6021505

In Python:

51

52

tp: 63

fp: 14

tn: 189

fn: 80

total: 346

53

accuracy: 0.7283236994219653

misclassrate: 0.27167630057803466

sensitivity: 0.4405594405594406

FNR: 0.5594405594405595

specificity: 0.9310344827586207

FPR: 0.06896551724137931

precision: 0.8181818181818182

NPV: 0.7026022304832714

F1score: 0.5727272727272728

2

RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE

Consider the situation of a binary classi�cation tree. We are given actual observations (yes/no) and
predicted probabilities of yes/no. Before we introduced a cut-o�, a number between 0 and 1, such
that if the predicted probability of "yes" is above the cut-o�, then we assume that the predicted
value is "yes". We used cut-o�s ranging between 0.01 and 0.99 with a step of 0.01 to choose the
optimal cuto� that maximizes the true (correct) classi�cation rate (equivalently, minimizes, the
misclassi�cation rate). In the previous section, we computed the performance measures assuming
the cut-o� is 0.5.

A more sophisticated approach relies on the Receiver Operating Characteristic (ROC) curve, schemat-
ically presented in the �gure below. A ROC curve is a plot of sensitivity (true positive rate) against
1-speci�city (false positive rate) for di�erent cut-o� points. The cut-o� points are often termed
classi�cation thresholds. A ROC curve connects the origin (0, 0) and the point (1, 1) as a curve that
lies above the bisector. Note that the bisector represents a segment on which both sensitivity and
speci�city are equal to 0.5, corresponding to a random guess.

An ROC curve shows a trade-o� between sensitivity and speci�city, that is, an increase in sensitiv-
ity is accompanied by a decrease in speci�city. These two quantities are known to work reciprocally.

54

De�ne the point (0,1) as the �ideal� point. Indeed, at this point sensitivity (true positive rate) and
speci�city (true negative rate) would both be equal to one, which is clearly a hypothetical situation.
Nonetheless, the point on the ROC curve closest to this�ideal� point gives the optimal cut-o� for
the binary classi�cation.

Area Under the ROC Curve

Often in practice another model performance measure is computed. It is the area under the
curve (AUC) (or area under the ROC curve (AUROC)). The larger the area under the ROC
curve, the further the curve is from the bisector, and thus a higher value of AUC indicates a better
overall �t of the model (for any classi�cation threshold).

In theory, the ROC curve is smooth, and computing AUC would involve calculus. In practice,
however, the cut-o�s are chosen on a discrete scale, so the �tted ROC curve is piece-wise linear, and
thus, the area can be computed as the sum of areas of the trapezoids (see the �gure below). The
height of each trapezoid is the distance between two distinct consecutive values of 1− Specificity,
and the top and bottom sides are distinct consecutive values of Sensitivity. Hence, the formula for

the area of one trapezoid is
(
(1−Specificity)2− (1−Specificity)1

)(
Sensivity1 +Sensitivity2

)
/2.

55

56

Example. Consider the binary classi�cation tree with the Gini splitting algorithm and cost-
complexity pruning. We plot the ROC curve and �nd the optimal cut-o� that corresponds to
the minimal distance to the �ideal� point.

In SAS:

proc import out=pneumonia datafile="./pneumonia_data.csv"

dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=pneumonia rate=0.8 seed=6132208

out=pneumonia outall method=srs;

run;

/*GINI SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=pneumonia maxdepth=4;

class pneumonia gender tobacco_use;

model pneumonia(event="yes")= age gender tobacco_use PM2_5;

grow gini;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

/*COMPUTING CONFUSION MATRICES AND PERFORMANCE MEASURES

FOR TESTING SET FOR A RANGE OF CUTOFFS*/

data test;

set predicted;

if(selected="0");

run;

data cutoffs;

set test;

do i=0 to 101;

tp=(P_pneumoniayes >= 0.01*i and pneumonia="yes");

fp=(P_pneumoniayes >= 0.01*i and pneumonia="no");

tn=(P_pneumoniayes < 0.01*i and pneumonia="no");

fn=(P_pneumoniayes < 0.01*i and pneumonia="yes");

output;

end;

run;

57

proc sql;

create table confusion as

select i, sum(tp) as tp, sum(fp) as fp, sum(tn) as tn,

sum(fn) as fn, count(*) as total

from cutoffs

group by i;

quit;

proc sql;

create table measures as

select i, (tp+tn)/total as accuracy, (fp+fn)/total as

misclassrate, tp/(tp+fn) as sensitivity, tn/(fp+tn) as specificity,

fp/(fp+tn) as oneminusspec

from confusion

group by i;

quit;

/*PLOTTING ROC CURVE*/

title 'The Receiver Operating Characteristic Curve';

proc gplot data=measures;

symbol v=square interpol=join;

plot sensitivity*oneminusspec/ vaxis=0 to 1 by 0.1 haxis=0 to 1 by 0.1;

label sensitivity="Sensitivity" oneminusspec="1-Specificity";

run;

58

/*REPORTING MEASURES FOR THE POINT ON ROC CURVE CLOSEST TO THE IDEAL POINT (0,1)*/

proc sql;

select accuracy, misclassrate, sensitivity, specificity,

sqrt(oneminusspec**2+(1-sensitivity)**2) as distance, i*0.01 as cutoff

from measures

having distance=min(distance);

quit;

59

From this output, we see that any cut-o� between 0.31 and 0.48 gives the minimal distance between
the ROC curve and the �ideal� point.

/*COMPUTING AREA UNDER THE ROC CURVE*/

proc sort data=measures;

by oneminusspec;

run;

data AUC;

set measures;

lagx=lag(oneminusspec);

lagy=lag(sensitivity);

if lagx=. then lagx=0;

if lagy=. then lagy=0;

trapezoid=(oneminusspec-lagx)*(sensitivity+lagy)/2;

AUC+trapezoid;

run;

60

proc print data=AUC (firstobs=102) noobs;

var AUC;

run;

In R:
pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(283605)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

#FITTING PRUNED BINARY TREE WITH GINI SPLITTING
library(rpart)
tree.gini<- rpart(pneumonia∼ age + gender + tobacco_use + PM2_5, data=train, method="class",
parms=list(split="Gini"), maxdepth=4)

#COMPUTING CONFUSION MATRICES AND PERFORMANCE MEASURES FOR TEST-
ING DATA
#for a range of cut-o�s
pred.values<- predict(tree.gini, test)
test<- cbind(test,pred.values)

tpos<- matrix(NA, nrow=nrow(test), ncol=102)
fpos<- matrix(NA, nrow=nrow(test), ncol=102)
tneg<- matrix(NA, nrow=nrow(test), ncol=102)
fneg<- matrix(NA, nrow=nrow(test), ncol=102)

for (i in 0:101) {
tpos[,i+1]<- ifelse(test$pneumonia=="yes" & test$yes>=0.01*i,1,0)
fpos[,i+1]<- ifelse(test$pneumonia=="no" & test$yes>=0.01*i, 1,0)
tneg[,i+1]<- ifelse(test$pneumonia=="no" & test$yes<0.01*i,1,0)
fneg[,i+1]<- ifelse(test$pneumonia=="yes" & test$yes<0.01*i,1,0)

61

}

tp<- c()
fp<- c()
tn<- c()
fn<- c()
accuracy<- c()
misclassrate<- c()
sensitivity<- c()
speci�city<- c()
oneminusspec<- c()
cuto�<- c()

for (i in 1:102) {
tp[i]<- sum(tpos[,i])
fp[i]<- sum(fpos[,i])
tn[i]<- sum(tneg[,i])
fn[i]<- sum(fneg[,i])
total<- nrow(test)
accuracy[i]<- (tp[i]+tn[i])/total
misclassrate[i]<- (fp[i]+fn[i])/total
sensitivity[i]<- tp[i]/(tp[i]+fn[i])
speci�city[i]<- tn[i]/(fp[i]+tn[i])
oneminusspec[i]<- fp[i]/(fp[i]+tn[i])
cuto�[i]<- 0.01*(i-1)
}

#PLOTTING ROC CURVE
plot(oneminusspec, sensitivity, type="l", lty=1, main="The Receiver Operating Characteristic
Curve", xlab="1-Speci�city", ylab="Sensitivity")
points(oneminusspec, sensitivity, pch=0) #pch=plot character, 0=square

62

#REPORTING MEASURES FOR THE POINT ON ROC CURVE CLOSEST TO THE IDEAL
POINT (0,1)
distance<- c()
for (i in 1:102)

distance[i]<- sqrt(oneminusspec[i]∧2+(1-sensitivity[i])∧2)

measures<- cbind(accuracy, misclassrate, sensitivity, speci�city, distance, cuto�)
min.dist<- min(distance)
print(measures[which(measures[,5]==min.dist),])

accuracy misclassrate sensitivity specificity distance cutoff

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.30

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.31

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.32

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.33

63

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.34

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.35

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.36

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.37

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.38

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.39

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.40

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.41

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.42

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.43

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.44

0.7886905 0.2113095 0.6557377 0.864486 0.3699738 0.45

We can see that for the binary tree built in R, any cut-o� between 0.30 and 0.45 is an optimal one.

#COMPUTING AREA UNDER THE ROC CURVE
sensitivity<- sensitivity[order(sensitivity)]
oneminusspec<- oneminusspec[order(oneminusspec)]

library(Hmisc) #Harrell Miscellaneous packages
lagx<- Lag(oneminusspec,shift=1)
lagy<- Lag(sensitivity, shift=1)
lagx[is.na(lagx)]<- 0
lagy[is.na(lagy)]<- 0
trapezoid<- (oneminusspec-lagx)*(sensitivity+lagy)/2
print(AUC<- sum(trapezoid))

0.8439367

In Python:

64

65

66

67

From this output, we see that any cut-o� between 0.28 and 0.34 gives the minimal distance between
the ROC curve and the �ideal� point. The area under the ROC curve is about 0.78. 2

MULTINOMIAL CLASSIFICATION TREE

A multi-class (or multinomial) classi�cation tree classi�es observations into one of three or
more classes. The same algorithms as for the binary classi�cation tree apply to this case as well.

68

The output for prediction contains predicted probabilities of each of the multiple classes. We as-
sume that the class with the highest predicted probability is the class actually predicted by the
�tted model.

Performance Measures for Individual Classes

The performance measures used for binary classi�cation can be extended to a multi-class classi�ca-
tion. Unlike binary classi�cation, there are no positive or negative classes but we can compute TP,
TN, FP, and FN for each individual class.

For example, in a data set, there are 50 greens, 40 blues, and 10 reds. The predicted colors are
summarized in the following confusion matrix:

True color
Predicted Color
green blue red

green 35 5 10
blue 5 30 5
red 3 2 5

We consider each color separately and compute all the performance measures. For the green color,
the 2-by-2 confusion matrix has the form:

True color
Predicted Color
green not green

green 35 15
not green 8 42

Now we compute the performance measures for this confusion matrix: TP = 35, TN = 42, FP =
8, FN = 15,Accuracy = (TP+TN)/(TP+TN+FP+FN) = (35+42)/100 = 0.77,Misclassi�cation
Rate = (FP+FN)/(TP+TN+FP+FN) = 1−Accuracy = 0.23, Sensitivity = TP/(TP+FN) =
35/(35 + 15) = 0.70,FNR = FN/(TP + FN) = 1 − Sensitivity = 0.30, Speci�city = TN/(FP +
TN) = 42/(8+42) = 0.84,FPR = FP/(FP +TN) = 1−Speci�city = 0.16,Precision = TP/(TP +
FP) = 35/(35 + 8) = 0.813953,NPV = TN/(FN + TN) = 42/(15 + 42) = 0.736842,F1-score =

2TP

2TP + FN + FP
=

(2)(35)

(2)(35) + 15 + 8
= 0.752688.

For the blue color, the 2-by-2 confusion matrix is

True color
Predicted Color
blue not blue

blue 30 10
not blue 7 53

The performance measures for this binary classi�cation are: TP = 30, TN = 53, FP = 7, FN =
10,Accuracy = (TP + TN)/(TP + TN + FP + FN) = (30 + 53)/100 = 0.83,Misclassi�cation

69

Rate = (FP+FN)/(TP+TN+FP+FN) = 1−Accuracy = 0.17, Sensitivity = TP/(TP+FN) =
30/(30 + 10) = 0.75,FNR = FN/(TP + FN) = 1 − Sensitivity = 0.25, Speci�city = TN/(FP +
TN) = 53/(7+53) = 0.95,FPR = FP/(FP +TN) = 1−Speci�city = 0.05,Precision = TP/(TP +
FP) = 30/(30 + 7) = 0.810811,NPV = TN/(FN + TN) = 53/(10 + 53) = 0.84127,F1-score =

2TP

2TP + FN + FP
=

(2)(30)

(2)(30) + 10 + 7
= 0.779221.

Finally, for the red color, the 2-by-2 confusion matrix is

True color
Predicted Color
red not red

red 5 5
not red 15 75

Now we compute the performance measures for this confusion matrix: TP = 5, TN = 75, FP =
15, FN = 5,Accuracy = (TP+TN)/(TP+TN+FP+FN) = (5+75)/100 = 0.80,Misclassi�cation
Rate = (FP+FN)/(TP+TN+FP+FN) = 1−Accuracy = 0.20, Sensitivity = TP/(TP+FN) =
5/(5 + 5) = 0.50,FNR = FN/(TP + FN) = 1 − Sensitivity = 0.50, Speci�city = TN/(FP +
TN) = 75/(15 + 75) = 0.8333,FPR = FP/(FP + TN) = 1 − Speci�city = 0.1667,Precision =
TP/(TP + FP) = 5/(5 + 15) = 0.25,NPV = TN/(FN + TN) = 75/(5 + 75) = 0.9375,F1-score =

2TP

2TP + FN + FP
=

(2)(5)

(2)(5) + 5 + 15
= 0.3333.

Micro Measures

Turning now to the multinomial model, we compute performance measures based on total TP =
35 + 30 + 5 = 70, total TN = 42 + 53 + 75 = 170, total FP = 8 + 7 + 15 = 30, and total
FN = 15 + 10 + 5 = 30. These are global measures for the whole model, called micro-averaged
measures. The micro-averaged measures are: Accuracy = (TP + TN)/(TP + TN + FP + FN) =
(70+170)/300 = 0.80,Misclassi�cation Rate = 1−Accuracy = 0.20, Sensitivity = TP/(TP+FN) =
70/(70+30) = 0.70,FNR = 1−Sensitivity = 0.30, Speci�city = TN/(FP+TN) = 170/(30+170) =
0.85,FPR = 1 − Speci�city = 0.15,Precision = TP/(TP + FP) = 70/(70 + 30) = 0.70,NPV =

TN/(FN + TN) = 170/(30 + 170) = 0.85,F1-score =
2TP

2TP + FN + FP
=

(2)(70)

(2)(70) + 30 + 30
=

0.70.

Macro Measures

Macro measures are computed as an arithmetic average of individual measures for each class.
The macro measures are: Accuracy = (0.77 + 0.83 + 0.80)/3 = 0.80,Misclassi�cation Rate =
1 − Accuracy = 0.20, Sensitivity = (0.70 + 0.75 + 0.50)/3 = 0.65,FNR = 1 − Sensitivity =
0.35, Speci�city = (0.84 + 0.95 + 0.8333)/3 = 0.87,FPR = 1 − Speci�city = 0.13,Precision =

70

(0.813953 + 0.810811 + 0.25)/3 = 0.624921,NPV = (0.736842 + 0.84127 + 0.9375)/3 = 0.838537,
F1-score = (0.752688 + 0.779221 + 0.3333)/3 = 0.621736.

Weighted Macro Measures

The weighted macro measures are weighted means of the measures for individual classes, where
weights are proportional to the total number of samples in the class. There are 50 greens, 40 blues,
and 10 reds, therefore, the weights are 50/(50+40+10)=0.5 for greens, 40/100=0.4 for blues, and
10/100=0.1 for reds. The weighted macro measures are computed as: Accuracy = (0.77)(0.5) +
(0.83)(0.4) + (0.80)(0.1) = 0.797,Misclassi�cation Rate = 1 − Accuracy = 0.203, Sensitivity =
(0.70)(0.5)+(0.75)(0.4)+(0.50)(0.1) = 0.70,FNR = 1−Sensitivity = 0.30, Speci�city = (0.84)(0.5)+
(0.95)(0.4)+(0.8333)(0.1) = 0.88333,FPR = 1−Speci�city = 0.11667,Precision = (0.813953)(0.5)+
(0.810811)(0.4) + (0.25)(0.1) = 0.756301,NPV = (0.736842)(0.5) + (0.84127)(0.4) + (0.9375)(0.1) =
0.798679,F1-score = (0.752688)(0.5) + (0.779221)(0.4) + (0.3333)(0.1) = 0.721362.

Example. The data set "movie_data.csv" contains data on movie-goers (age, gender, member-
ship, and the number of movies watched in the previous 4 weeks), and their rating of a new movie
(very bad/bad/okay/good/very good). There are 758 rows in this data set. We split the data into
80% training and 20% testing sets, and �t a multinomial classi�cation tree using Gini, entropy,
and CHAID splitting criteria and the cost-complexity pruning algorithm. We then compute per-
formance measures for individual classes, micro measures, macro measures, and weighted macro
measures, and compare the three models based on these measures.

In SAS:

proc import out=movie

datafile="./movie_data.csv" dbms=csv replace;

run;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=movie rate=0.8 seed=118607

out=movie outall method=srs;

run;

/*GINI SPLITTING AND COST-COMPLEXITY PRUNING */

proc hpsplit data=movie;

class rating gender member;

model rating=age gender member nmovies;

grow gini;

prune costcomplexity;

partition rolevar=selected(train="1");

71

output out=predicted;

ID selected;

run;

/*MACRO FOR COMPUTING PERFORMANCE MEASURES*/

72

%macro perf_measures(dataset);

/*computing confusion matrix*/

data test;

set predicted;

if(selected="0");

maxprob=max(P_ratingbad, P_ratinggood, P_ratingokay,

P_ratingvery_bad, P_ratingvery_good);

if maxprob=P_ratingvery_good then predclass='very good';

if maxprob=P_ratinggood then predclass='good';

if maxprob=P_ratingokay then predclass='okay';

if maxprob=P_ratingbad then predclass='bad';

if maxprob=P_ratingvery_bad then predclass='very bad';

run;

/*computing total number of rows in test set*/

proc sql;

create table totalrows as

select count(*) as nrows

from test;

quit;

data _null_;

set totalrows;

call symput('totalrows', nrows);

run;

/*computing performance measures for individual classes*/

%macro class_metrics(class);

data indiv_class;

set test;

tp=(predclass=&class and rating=&class);

fp=(predclass=&class and rating ne &class);

tn=(predclass ne &class and rating ne &class);

fn=(predclass ne &class and rating=&class);

run;

proc sql;

create table confusion as

select sum(tp) as tp, sum(fp) as fp, sum(tn) as tn,

sum(fn) as fn, count(*) as total

from indiv_class;

73

quit;

proc sql;

create table measures as

select &class as class, tp, fp, tn, fn,

(tp+tn)/total as accuracy, (fp+fn)/total as

misclassrate, tp/(tp+fn) as sensitivity,

fn/(tp+fn) as FNR, tn/(fp+tn) as specificity,

fp/(fp+tn) as FPR, tp/(tp+fp) as precision,

tn/(fn+tn) as NPV, 2*tp/(2*tp+fn+fp) as F1score

from confusion;

select * from measures;

quit;

proc append base=&dataset data=measures;

run;

%mend;

%class_metrics('very bad')

%class_metrics('bad')

%class_metrics('okay')

%class_metrics('good')

%class_metrics('very good')

/*computing micro measures*/

proc sql;

create table totals as

select sum(tp) as tp, sum(fp) as fp, sum(tn) as tn,

sum(fn) as fn

from &dataset;

quit;

proc sql;

select 'micro measures',(tp+tn)/(tp+fp+tn+fn)

as accuracy, (fp+fn)/(tp+fp+tn+fn)

as misclassrate, tp/(tp+fn) as sensitivity,

fn/(tp+fn) as FNR, tn/(fp+tn) as specificity,

fp/(fp+tn) as FPR, tp/(tp+fp) as precision,

tn/(fn+tn) as NPV, 2*tp/(2*tp+fn+fp) as F1score

from totals;

quit;

74

/*computing macro measures*/

proc sql;

select 'macro measures', mean(accuracy) as accuracy,

mean(misclassrate) as misclassrate, mean(sensitivity) as sensitivity,

mean(FNR) as FNR, mean(specificity) as specificity,

mean(FPR) as FPR, mean(precision) as precision,

mean(NPV) as NPV, mean(F1score) as F1score

from &dataset;

quit;

/*computing weighted macro measures*/

data &dataset;

set &dataset;

weight=(tp+fn)/&totalrows;

w_accuracy=accuracy*weight;

w_misclassrate=misclassrate*weight;

w_sensitivity=sensitivity*weight;

w_FNR=FNR*weight;

w_specificity=specificity*weight;

w_FPR=FPR*weight;

w_precision=precision*weight;

w_FPR=FPR*weight;

w_precision=precision*weight;

w_NPV=NPV*weight;

w_F1score=F1score*weight;

run;

proc sql;

select 'weighted macro measures',sum(w_accuracy)

as accuracy, sum(w_misclassrate) as misclassrate,

sum(w_sensitivity) as sensitivity,

sum(w_FNR) as FNR, sum(w_specificity) as specificity,

sum(w_FPR) as FPR, sum(w_precision) as precision,

sum(w_NPV) as NPV, sum(w_F1score) as F1score

from &dataset;

quit;

%mend;

/*COMPUTING PERFORMANCE MEASURES FOR FITTED GINI TREE*/

%perf_measures(ginitree)

75

76

/*ENTROPY SPLITTING AND COST-COMPLEXITY PRUNING*/

proc hpsplit data=movie;

class rating gender member;

model rating=age gender member nmovies;

grow entropy;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

77

/*COMPUTING PERFORMANCE MEASURES FOR FITTED ENTROPY TREE*/

%perf_measures(entropytree)

78

79

/*CHAID SPLITTING AND COST-COMPLEXITY PRUNING*/

proc hpsplit data=movie;

class rating gender member;

model rating=age gender member nmovies;

grow CHAID;

prune costcomplexity;

partition rolevar=selected(train="1");

output out=predicted;

ID selected;

run;

80

/*COMPUTING PERFORMANCE MEASURES FITTED CHAID TREE*/

%perf_measures(CHAIDtree)

81

82

In R:
movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(566222)
sample <- sample(c(TRUE, FALSE), nrow(movie.data),replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

#FITTING PRUNED MULTINOMIAL CLASSIFICATION TREE WITH GINI SPLITTING
library(rpart)
tree.gini<- rpart(rating ∼ age + gender + member + nmovies, data=train, method="class",

83

parms=list(split="Gini"), maxdepth=4)

#PLOTTING FITTED TREE
library(rpart.plot)
rpart.plot(tree.gini, type=3)

#COMPUTING PREDICTED VALUES FOR TESTING DATA
pred.values<- predict(tree.gini, test)

#DETERMINING PREDICTED CLASSES
test<- cbind(test, pred.values)
test$maxprob<- pmax(test$'very bad',test$'bad',test$'okay', test$'good',test$'very good')

test$predclass<- ifelse(test$maxprob==test$'very bad', 'very bad', ifelse(test$maxprob==test$'bad','bad',
ifelse(test$maxprob==test$'okay','okay', ifelse(test$maxprob==test$'good','good','very good'))))

84

#DEFINING FUNCTION FOR COMPUTING PERFORMANCE MEASURES
perf.measures<- function() {

#COMPUTING PERFORMANCE MEASURES FOR INDIVIDUAL CLASSES
tp<- c()
fp<- c()
tn<- c()
fn<- c()
accuracy<- c()
misclassrate<- c()
sensitivity<- c()
FNR<- c()
speci�city<- c()
FPR<- c()
precision<- c()
NPV<- c()
F1score<- c()

class.metrics<- function(class) {

tp.class<- ifelse(test$predclass==class & test$liked==class,1,0)
fp.class<- ifelse(test$predclass==class & test$liked!=class,1,0)
tn.class<- ifelse(test$predclass!=class & test$liked!=class,1,0)
fn.class<- ifelse(test$predclass!=class & test$liked==class,1,0)

message('CLASS MEASURES:')
message('class:', class)
print(paste('tp:', tp[class]�- sum(tp.class)))
#�- is global assignment, works outside the function
print(paste('fp:', fp[class]�- sum(fp.class)))
print(paste('tn:', tn[class]�- sum(tn.class)))
print(paste('fn:', fn[class]�- sum(fn.class)))
total�- nrow(test)

print(paste('accuracy:', accuracy[class]�- (tp[class]+tn[class])/total))
print(paste('misclassrate:', misclassrate[class]�- (fp[class]+fn[class])/total))
print(paste('sensitivity:', sensitivity[class]�- tp[class]/(tp[class]+fn[class])))
print(paste('FNR:', FNR[class]�- fn[class]/(tp[class]+fn[class])))
print(paste('speci�city:', speci�city[class]�- tn[class]/(fp[class]+tn[class])))
print(paste('FPR:', FPR[class]�- fp[class]/(fp[class]+tn[class])))
print(paste('precision:', precision[class]�- tp[class]/(tp[class]+fp[class])))

85

print(paste('NPV:', NPV[class]�- tn[class]/(fn[class]+tn[class])))
print(paste('F1score:', F1score[class]�- 2*tp[class]/(2*tp[class]+fn[class]+fp[class])))

}

class.metrics(class='very bad')
class.metrics(class='bad')
class.metrics(class='okay')
class.metrics(class='good')
class.metrics(class='very good')

#COMPUTING MICRO MEASURES
tp.sum<- sum(tp)
fp.sum<- sum(fp)
tn.sum<- sum(tn)
fn.sum<- sum(fn)

message('MICRO MEASURES:')
print(paste('accuracy:', accuracy.micro<- (tp.sum+tn.sum)/(tp.sum+fp.sum+tn.sum+fn.sum)))
print(paste('misclassrate:', misclassrate.micro<- (fp.sum+fn.sum)/(tp.sum+fp.sum+tn.sum+fn.sum)))
print(paste('sensitivity:', sensitivity.micro<- tp.sum/(tp.sum+fn.sum)))
print(paste('FNR:', FNR.micro<- fn.sum/(tp.sum+fn.sum)))
print(paste('speci�city:', speci�city.micro<- tn.sum/(fp.sum+tn.sum)))
print(paste('FPR:', FPR.micro<- fp.sum/(fp.sum+tn.sum)))
print(paste('precision:', precision.micro<- tp.sum/(tp.sum+fp.sum)))
print(paste('NPV:', NPV.micro<- tn.sum/(fn.sum+tn.sum)))
print(paste('F1-score:', F1score.micro<- 2*tp.sum/(2*tp.sum+fn.sum+fp.sum)))

#COMPUTING MACRO MEASURES
message('MACRO MEASURES:')
print(paste('accuracy:', accuracy.macro<- mean(accuracy)))
print(paste('misclassrate:', misclassrate.macro<- mean(misclassrate)))
print(paste('sensitivity:', sensitivity.macro<- mean(sensitivity)))
print(paste('FNR:', FNR.macro<- mean(FNR)))
print(paste('speci�city:', speci�city.macro<- mean(speci�city)))
print(paste('FPR:', FPR.macro<- mean(FPR)))
print(paste('precision:', precision.macro<- mean(precision, na.rm=TRUE)))
print(paste('NPV:', NPV.macro<- mean(NPV)))
print(paste('F1-score:', F1score.macro<- mean(F1score)))

#COMPUTING WEIGHTED MACRO MEASURES
weight<- c()

86

for (class in 1:5)
weight[class]<- (tp[class]+fn[class])/total

message('WEIGHTED MACRO MEASURES:')
print(paste('accuracy:', accuracy.wmacro<- weight%*%accuracy))
print(paste('misclassrate:', misclassrate.wmacro<- weight%*%misclassrate))
print(paste('sensitivity:', sensitivity.wmacro<- weight%*%sensitivity))
print(paste('FNR:', FNR.wmacro<- weight%*%FNR))
print(paste('speci�city:', speci�city.wmacro<- weight%*%speci�city))
print(paste('FPR:', FPR.wmacro<- weight%*%FPR))
precision[is.na(precision)]<- 0
print(paste('precision:', precision.wmacro<- weight%*%precision))
print(paste('NPV:', NPV.wmacro<- weight%*%NPV))
print(paste('F1-score:', F1score.wmacro<- weight%*%F1score))

}

#COMPUTING PERFORMANCE MEASURES FOR FITTED GINI TREE
perf.measures()

CLASS MEASURES:

class:very bad

[1] "tp: 3"

[1] "fp: 10"

[1] "tn: 167"

[1] "fn: 13"

[1] "accuracy: 0.880829015544041"

[1] "misclassrate: 0.119170984455959"

[1] "sensitivity: 0.1875"

[1] "FNR: 0.8125"

[1] "specificity: 0.943502824858757"

[1] "FPR: 0.0564971751412429"

[1] "precision: 0.230769230769231"

[1] "NPV: 0.927777777777778"

[1] "F1score: 0.206896551724138"

CLASS MEASURES:

class:bad

[1] "tp: 10"

[1] "fp: 24"

[1] "tn: 139"

[1] "fn: 20"

[1] "accuracy: 0.772020725388601"

87

[1] "misclassrate: 0.227979274611399"

[1] "sensitivity: 0.333333333333333"

[1] "FNR: 0.666666666666667"

[1] "specificity: 0.852760736196319"

[1] "FPR: 0.147239263803681"

[1] "precision: 0.294117647058824"

[1] "NPV: 0.874213836477987"

[1] "F1score: 0.3125"

CLASS MEASURES:

class:okay

[1] "tp: 12"

[1] "fp: 49"

[1] "tn: 108"

[1] "fn: 24"

[1] "accuracy: 0.621761658031088"

[1] "misclassrate: 0.378238341968912"

[1] "sensitivity: 0.333333333333333"

[1] "FNR: 0.666666666666667"

[1] "specificity: 0.687898089171974"

[1] "FPR: 0.312101910828025"

[1] "precision: 0.19672131147541"

[1] "NPV: 0.818181818181818"

[1] "F1score: 0.247422680412371"

CLASS MEASURES:

class:good

[1] "tp: 20"

[1] "fp: 44"

[1] "tn: 95"

[1] "fn: 34"

[1] "accuracy: 0.595854922279793"

[1] "misclassrate: 0.404145077720207"

[1] "sensitivity: 0.37037037037037"

[1] "FNR: 0.62962962962963"

[1] "specificity: 0.683453237410072"

[1] "FPR: 0.316546762589928"

[1] "precision: 0.3125"

[1] "NPV: 0.736434108527132"

[1] "F1score: 0.338983050847458"

CLASS MEASURES:

class:very good

[1] "tp: 14"

[1] "fp: 7"

88

[1] "tn: 129"

[1] "fn: 43"

[1] "accuracy: 0.740932642487047"

[1] "misclassrate: 0.259067357512953"

[1] "sensitivity: 0.245614035087719"

[1] "FNR: 0.754385964912281"

[1] "specificity: 0.948529411764706"

[1] "FPR: 0.0514705882352941"

[1] "precision: 0.666666666666667"

[1] "NPV: 0.75"

[1] "F1score: 0.358974358974359"

MICRO MEASURES:

[1] "accuracy: 0.722279792746114"

[1] "misclassrate: 0.277720207253886"

[1] "sensitivity: 0.305699481865285"

[1] "FNR: 0.694300518134715"

[1] "specificity: 0.826424870466321"

[1] "FPR: 0.173575129533679"

[1] "precision: 0.305699481865285"

[1] "NPV: 0.826424870466321"

[1] "F1-score: 0.305699481865285"

MACRO MEASURES:

[1] "accuracy: 0.722279792746114"

[1] "misclassrate: 0.277720207253886"

[1] "sensitivity: 0.294030214424951"

[1] "FNR: 0.705969785575049"

[1] "specificity: 0.823228859880366"

[1] "FPR: 0.176771140119634"

[1] "precision: 0.340154971194026"

[1] "NPV: 0.821321508192943"

[1] "F1-score: 0.292955328391665"

WEIGHTED MACRO MEASURES:

[1] "accuracy: 0.694542135359339"

[1] "misclassrate: 0.305457864640661"

[1] "sensitivity: 0.305699481865285"

[1] "FNR: 0.694300518134715"

[1] "specificity: 0.810444817536544"

[1] "FPR: 0.189555182463457"

[1] "precision: 0.385869452420659"

[1] "NPV: 0.792968118413444"

[1] "F1-score: 0.312741888755092"

#FITTING PRUNED MULTINOMIAL CLASSIFICATION TREE WITH ENTROPY SPLIT-

89

TING
library(rpart)
tree.entropy<- rpart(rating ∼ age + gender + member + nmovies, data=train, method="class",
parms=list(split="entropy"))

#PLOTTING FITTED TREE
rpart.plot(tree.entropy, type=3)
#Note: same as tree.gini

#FITTING PRUNED MULTINOMIAL CLASSIFICATION TREE WITH CHAID SPLITTING
#BINNING CONTINUOUS PREDICTOR VARIABLES
library(dplyr)
movie.data<- mutate(movie.data, age.cat=ntile(age,10))

#CREATING INDICATORS FOR CATEGORICAL VARIABLES
movie.data$male<- ifelse(movie.data$gender=="M",1,0)
movie.data$member.yes<- ifelse(movie.data$member=="yes",1,0)

90

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(566222)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

#FITTING BINARY CLASSIFICATION TREE
library(CHAID)
tree.CHAID<- chaid(as.factor(rating)∼ as.factor(age.cat) + as.factor(male) + as.factor(member.yes)
+ as.factor(nmovies), data=train)

#PLOTTING FITTED TREE
plot(tree.CHAID, type="simple")

91

#COMPUTING PREDICTED VALUES FOR TESTING DATA
pred.pneumonia<- predict(tree.CHAID, newdata=test)

#COMPUTING PERFORMANCE MEASURES FOR FITTED CHAID TREE
test$predclass<- pred.values
perf.measures()

CLASS MEASURES:

class:very bad

[1] "tp: 3"

[1] "fp: 8"

[1] "tn: 169"

[1] "fn: 13"

[1] "accuracy: 0.89119170984456"

[1] "misclassrate: 0.10880829015544"

[1] "sensitivity: 0.1875"

[1] "FNR: 0.8125"

[1] "specificity: 0.954802259887006"

[1] "FPR: 0.0451977401129944"

[1] "precision: 0.272727272727273"

[1] "NPV: 0.928571428571429"

[1] "F1score: 0.222222222222222"

CLASS MEASURES:

class:bad

[1] "tp: 0"

[1] "fp: 0"

[1] "tn: 163"

[1] "fn: 30"

[1] "accuracy: 0.844559585492228"

[1] "misclassrate: 0.155440414507772"

[1] "sensitivity: 0"

[1] "FNR: 1"

[1] "specificity: 1"

[1] "FPR: 0"

[1] "precision: NaN"

[1] "NPV: 0.844559585492228"

[1] "F1score: 0"

CLASS MEASURES:

class:okay

[1] "tp: 12"

[1] "fp: 47"

[1] "tn: 110"

92

[1] "fn: 24"

[1] "accuracy: 0.632124352331606"

[1] "misclassrate: 0.367875647668394"

[1] "sensitivity: 0.333333333333333"

[1] "FNR: 0.666666666666667"

[1] "specificity: 0.700636942675159"

[1] "FPR: 0.299363057324841"

[1] "precision: 0.203389830508475"

[1] "NPV: 0.82089552238806"

[1] "F1score: 0.252631578947368"

CLASS MEASURES:

class:good

[1] "tp: 9"

[1] "fp: 31"

[1] "tn: 108"

[1] "fn: 45"

[1] "accuracy: 0.606217616580311"

[1] "misclassrate: 0.393782383419689"

[1] "sensitivity: 0.166666666666667"

[1] "FNR: 0.833333333333333"

[1] "specificity: 0.776978417266187"

[1] "FPR: 0.223021582733813"

[1] "precision: 0.225"

[1] "NPV: 0.705882352941177"

[1] "F1score: 0.191489361702128"

CLASS MEASURES:

class:very good

[1] "tp: 36"

[1] "fp: 47"

[1] "tn: 89"

[1] "fn: 21"

[1] "accuracy: 0.647668393782383"

[1] "misclassrate: 0.352331606217617"

[1] "sensitivity: 0.631578947368421"

[1] "FNR: 0.368421052631579"

[1] "specificity: 0.654411764705882"

[1] "FPR: 0.345588235294118"

[1] "precision: 0.433734939759036"

[1] "NPV: 0.809090909090909"

[1] "F1score: 0.514285714285714"

MICRO MEASURES:

[1] "accuracy: 0.724352331606218"

93

[1] "misclassrate: 0.275647668393782"

[1] "sensitivity: 0.310880829015544"

[1] "FNR: 0.689119170984456"

[1] "specificity: 0.827720207253886"

[1] "FPR: 0.172279792746114"

[1] "precision: 0.310880829015544"

[1] "NPV: 0.827720207253886"

[1] "F1-score: 0.310880829015544"

MACRO MEASURES:

[1] "accuracy: 0.724352331606218"

[1] "misclassrate: 0.275647668393782"

[1] "sensitivity: 0.263815789473684"

[1] "FNR: 0.736184210526316"

[1] "specificity: 0.817365876906847"

[1] "FPR: 0.182634123093153"

[1] "precision: 0.283713010748696"

[1] "NPV: 0.82179995969676"

[1] "F1-score: 0.236125775431486"

WEIGHTED MACRO MEASURES:

[1] "accuracy: 0.683964670192488"

[1] "misclassrate: 0.316035329807512"

[1] "sensitivity: 0.310880829015544"

[1] "FNR: 0.689119170984456"

[1] "specificity: 0.77594855551869"

[1] "FPR: 0.22405144448131"

[1] "precision: 0.251598765949257"

[1] "NPV: 0.797834187071944"

[1] "F1-score: 0.271010381574411"

94

In Python:

95

96

97

98

99

100

PERFORMANCE MEASURES FOR FITTED GINI TREE

CLASS MEASURES:

CLASS: 1

tp: 8

fp: 15

tn: 127

fn: 2

accuracy: 0.8881578947368421

misclassrate: 0.1118421052631579

sensitivity: 0.8

FNR: 0.2

specificity: 0.8943661971830986

FPR: 0.1056338028169014

precision: 0.34782608695652173

NPV: 0.9844961240310077

F1score: 0.48484848484848486

CLASS: 2

tp: 0

fp: 0

tn: 125

fn: 27

accuracy: 0.8223684210526315

misclassrate: 0.17763157894736842

101

sensitivity: 0.0

FNR: 1.0

specificity: 1.0

FPR: 0.0

precision: 0

NPV: 0.8223684210526315

F1score: 0.0

CLASS: 3

tp: 5

fp: 21

tn: 106

fn: 20

accuracy: 0.7302631578947368

misclassrate: 0.26973684210526316

sensitivity: 0.2

FNR: 0.8

specificity: 0.8346456692913385

FPR: 0.16535433070866143

precision: 0.19230769230769232

NPV: 0.8412698412698413

F1score: 0.19607843137254902

CLASS: 4

tp: 23

fp: 53

tn: 58

fn: 18

accuracy: 0.5328947368421053

misclassrate: 0.46710526315789475

sensitivity: 0.5609756097560976

FNR: 0.43902439024390244

specificity: 0.5225225225225225

FPR: 0.4774774774774775

precision: 0.3026315789473684

NPV: 0.7631578947368421

F1score: 0.39316239316239315

CLASS: 5

tp: 13

fp: 14

tn: 89

102

fn: 36

accuracy: 0.6710526315789473

misclassrate: 0.32894736842105265

sensitivity: 0.2653061224489796

FNR: 0.7346938775510204

specificity: 0.8640776699029126

FPR: 0.13592233009708737

precision: 0.48148148148148145

NPV: 0.712

F1score: 0.34210526315789475

MICRO MEASURES:

accuracy: 0.7289473684210527

misclassrate: 0.2710526315789474

sensitivity: 0.3223684210526316

FNR: 0.6776315789473685

specificity: 0.8305921052631579

FPR: 0.16940789473684212

precision: 0.3223684210526316

NPV: 0.8305921052631579

F1-score: 0.3223684210526316

MACRO MEASURES:

accuracy: 0.7289473684210527

misclassrate: 0.2710526315789474

sensitivity: 0.36525634644101546

FNR: 0.6347436535589845

specificity: 0.8231224117799745

FPR: 0.17687758822002553

precision: 0.26484936793861275

NPV: 0.8246584562180646

F1-score: 0.28323891450826433

WEIGHTED MACRO MEASURES:

accuracy: 0.6846866343490305

misclassrate: 0.31531336565096957

sensitivity: 0.3223684210526316

FNR: 0.6776315789473684

specificity: 0.7932436378472407

FPR: 0.20675636215275928

precision: 0.2913581612282383

NPV: 0.7845929495045243

103

F1-score: 0.2804819845210101

104

PERFORMANCE MEASURES FOR FITTED ENTROPY TREE

CLASS MEASURES:

CLASS: 1

tp: 8

fp: 15

tn: 127

fn: 2

accuracy: 0.8881578947368421

misclassrate: 0.1118421052631579

sensitivity: 0.8

FNR: 0.2

specificity: 0.8943661971830986

FPR: 0.1056338028169014

precision: 0.34782608695652173

NPV: 0.9844961240310077

F1score: 0.48484848484848486

CLASS: 2

tp: 0

fp: 0

tn: 125

fn: 27

accuracy: 0.8223684210526315

misclassrate: 0.17763157894736842

105

sensitivity: 0.0

FNR: 1.0

specificity: 1.0

FPR: 0.0

precision: 0

NPV: 0.8223684210526315

F1score: 0.0

CLASS: 3

tp: 5

fp: 21

tn: 106

fn: 20

accuracy: 0.7302631578947368

misclassrate: 0.26973684210526316

sensitivity: 0.2

FNR: 0.8

specificity: 0.8346456692913385

FPR: 0.16535433070866143

precision: 0.19230769230769232

NPV: 0.8412698412698413

F1score: 0.19607843137254902

CLASS: 4

tp: 21

fp: 51

tn: 60

fn: 20

accuracy: 0.5328947368421053

misclassrate: 0.46710526315789475

sensitivity: 0.5121951219512195

FNR: 0.4878048780487805

specificity: 0.5405405405405406

FPR: 0.4594594594594595

precision: 0.2916666666666667

NPV: 0.75

F1score: 0.37168141592920356

CLASS: 5

tp: 15

fp: 16

tn: 87

106

fn: 34

accuracy: 0.6710526315789473

misclassrate: 0.32894736842105265

sensitivity: 0.30612244897959184

FNR: 0.6938775510204082

specificity: 0.8446601941747572

FPR: 0.1553398058252427

precision: 0.4838709677419355

NPV: 0.71900826446281

F1score: 0.375

MICRO MEASURES:

accuracy: 0.7289473684210527

misclassrate: 0.2710526315789474

sensitivity: 0.3223684210526316

FNR: 0.6776315789473685

specificity: 0.8305921052631579

FPR: 0.16940789473684212

precision: 0.3223684210526316

NPV: 0.8305921052631579

F1-score: 0.3223684210526316

MACRO MEASURES:

accuracy: 0.7289473684210527

misclassrate: 0.2710526315789474

sensitivity: 0.3636635141861623

FNR: 0.6363364858138377

specificity: 0.8228425202379469

FPR: 0.17715747976205298

precision: 0.26313428273456324

NPV: 0.8234285301632582

F1-score: 0.28552166643004745

WEIGHTED MACRO MEASURES:

accuracy: 0.6846866343490305

misclassrate: 0.31531336565096957

sensitivity: 0.32236842105263164

FNR: 0.6776315789473685

specificity: 0.7918441801371034

FPR: 0.20815581986289658

precision: 0.2891708153285901

NPV: 0.7833030236786503

107

F1-score: 0.2852919979335258

def findDecision(obj): #obj[0]: age, obj[1]: gender, obj[2]: member, obj[3]: nmovies

{"feature": "age", "instances": 606, "metric_value": 40.4586, "depth": 1}

if obj[0]>24.271368369871805:

{"feature": "nmovies", "instances": 467, "metric_value": 20.0029, "depth": 2}

if obj[3]<=6:

{"feature": "member", "instances": 458, "metric_value": 17.7061, "depth": 3}

if obj[2]>0:

{"feature": "gender", "instances": 290, "metric_value": 15.2447, "depth": 4}

if obj[1]>0:

return 'good'

elif obj[1]<=0:

return 'bad'

else: return 'bad'

elif obj[2]<=0:

{"feature": "gender", "instances": 168, "metric_value": 12.3326, "depth": 4}

if obj[1]>0:

return 'very good'

elif obj[1]<=0:

return 'okay'

108

else: return 'okay'

else: return 'very good'

elif obj[3]>6:

{"feature": "member", "instances": 9, "metric_value": 2.5345, "depth": 3}

if obj[2]>0:

{"feature": "gender", "instances": 7, "metric_value": 0.8165, "depth": 4}

if obj[1]<=0:

return 'very bad'

elif obj[1]>0:

return 'bad'

else: return 'bad'

elif obj[2]<=0:

return 'very bad'

else: return 'very bad'

else: return 'very bad'

elif obj[0]<=24.271368369871805:

{"feature": "nmovies", "instances": 139, "metric_value": 17.1734, "depth": 2}

if obj[3]>3:

{"feature": "gender", "instances": 70, "metric_value": 12.6878, "depth": 3}

if obj[1]>0:

{"feature": "member", "instances": 36, "metric_value": 8.7214, "depth": 4}

if obj[2]>0:

return 'very good'

elif obj[2]<=0:

return 'very good'

else: return 'very good'

elif obj[1]<=0:

{"feature": "member", "instances": 34, "metric_value": 9.7217, "depth": 4}

if obj[2]>0:

return 'very good'

elif obj[2]<=0:

return 'good'

else: return 'good'

else: return 'very good'

elif obj[3]<=3:

{"feature": "gender", "instances": 69, "metric_value": 11.7781, "depth": 3}

if obj[1]>0:

{"feature": "member", "instances": 36, "metric_value": 9.6067, "depth": 4}

if obj[2]>0:

return 'very good'

elif obj[2]<=0:

return 'very good'

109

else: return 'very good'

elif obj[1]<=0:

{"feature": "member", "instances": 33, "metric_value": 7.5356, "depth": 4}

if obj[2]>0:

return 'good'

elif obj[2]<=0:

return 'good'

else: return 'good'

else: return 'good'

else: return 'very good'

else: return 'very good'

PERFORMANCE MEASURES FOR FITTED CHAID TREE

CLASS MEASURES:

CLASS: 1

110

tp: 1

fp: 1

tn: 141

fn: 9

accuracy: 0.9342105263157895

misclassrate: 0.06578947368421052

sensitivity: 0.1

FNR: 0.9

specificity: 0.9929577464788732

FPR: 0.007042253521126761

precision: 0.5

NPV: 0.94

F1score: 0.16666666666666666

CLASS: 2

tp: 10

fp: 24

tn: 101

fn: 17

accuracy: 0.7302631578947368

misclassrate: 0.26973684210526316

sensitivity: 0.37037037037037035

FNR: 0.6296296296296297

specificity: 0.808

FPR: 0.192

precision: 0.29411764705882354

NPV: 0.8559322033898306

F1score: 0.32786885245901637

CLASS: 3

tp: 0

fp: 12

tn: 115

fn: 25

accuracy: 0.756578947368421

misclassrate: 0.24342105263157895

sensitivity: 0.0

FNR: 1.0

specificity: 0.905511811023622

FPR: 0.09448818897637795

precision: 0.0

NPV: 0.8214285714285714

111

F1score: 0.0

CLASS: 4

tp: 17

fp: 46

tn: 65

fn: 24

accuracy: 0.5394736842105263

misclassrate: 0.4605263157894737

sensitivity: 0.4146341463414634

FNR: 0.5853658536585366

specificity: 0.5855855855855856

FPR: 0.4144144144144144

precision: 0.2698412698412698

NPV: 0.7303370786516854

F1score: 0.3269230769230769

CLASS: 5

tp: 18

fp: 23

tn: 80

fn: 31

accuracy: 0.6447368421052632

misclassrate: 0.35526315789473684

sensitivity: 0.3673469387755102

FNR: 0.6326530612244898

specificity: 0.7766990291262136

FPR: 0.22330097087378642

precision: 0.43902439024390244

NPV: 0.7207207207207207

F1score: 0.4

MICRO MEASURES:

accuracy: 0.7210526315789474

misclassrate: 0.2789473684210526

sensitivity: 0.3026315789473684

FNR: 0.6973684210526315

specificity: 0.8256578947368421

FPR: 0.17434210526315788

precision: 0.3026315789473684

NPV: 0.8256578947368421

F1-score: 0.3026315789473684

112

MACRO MEASURES:

accuracy: 0.7210526315789474

misclassrate: 0.27894736842105267

sensitivity: 0.25047029109746877

FNR: 0.7495297089025312

specificity: 0.8137508344428588

FPR: 0.1862491655571411

precision: 0.30059666142879915

NPV: 0.8136837148381616

F1-score: 0.24429171920975196

WEIGHTED MACRO MEASURES:

accuracy: 0.6689750692520776

misclassrate: 0.3310249307479224

sensitivity: 0.3026315789473685

FNR: 0.6973684210526316

specificity: 0.766122593266926

FPR: 0.23387740673307394

precision: 0.29945305036862846

NPV: 0.7783224955083824

F1-score: 0.28633534103227803

2

RANDOM FOREST

Individual decision tree algorithms can be prone to problems, such as bias and over-�tting. A
more practical approach is to construct multiple decision trees and combine the results into a single
output. This approach is termed ensemble methods. The most well-known ensemble method
is bagging (also known as bootstrap aggregation, bagging=bootstrap+aggregation). This
method was introduced in 1996 by Leo Breiman. In this method, data points in the training set
are sampled with replacement (producing a bootstrap sample), one-third of which, known as the
out-of-bag (OOB) sample, is set aside for cross-validation, and the remaining two-thirds of the
sample is used to build a decision tree. Decision trees are generated for each bootstrap sample
independently from others. The results are then aggregated depending on the type of trees used.
If regression trees are trained, the average of predicted values are computed. If classi�cation trees
are �tted, the majority of the predictions de�ne the �nal predicted class. The ensemble method
reduces variance and, as the result, yields more accurate predictions than individual decision trees.

113

The random forest algorithm is an extension of the bagging method as it utilizes both bagging
and feature randomness to create an uncorrelated forest of decision trees. Feature randomness
(also known as feature bagging or the random subspace method) generates a random subset
of variables (also called features), which ensures low correlation among decision trees. This is a key
di�erence between decision trees and random forests. While decision trees consider all the possible
variable splits, random forests only select a subset of those variables.

Random forest algorithms have three main hyper-parameters that need to be set before training.
These are node size, the number of trees, and the number of variables sampled.

Variable Importance

Random forest makes it easy to evaluate the variable importance (or the contribution of each
splitting variable to the model). It is sometimes termed the feature importance. There are
two commonly used ways to evaluate variable importance that are characteristically di�erent from
each other. One method is termed the loss reduction or Gini increase or Gini importance or
impurity reduction ormean decrease in impurity (MDI). It is used to measure how much the
model's accuracy decreases when a given variable is excluded. For a random forest with regression
trees, the loss functions are the mean squared error MSE = RSS/degree of freedom of error,

and the absolute error
1

n

n∑
i=1

|yi−ŷi|. The second feature importance method is the permutation

importance (or the mean decrease accuracy (MDA)), which identi�es the average decrease
in accuracy by randomly permuting the variable values in OOB samples.

Example. Consider the data in the �le "housing_data.csv". We construct random forest regres-
sion for this data set.

In SAS:

proc import out=housing

datafile="./housing_data.csv" dbms=csv replace;

run;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING*/

proc surveyselect data=housing rate=0.8 seed=502305

out=housing outall method=srs;

run;

/*BUILDING RANDOM FOREST REGRESSION*/

114

proc hpforest data=housing seed=829743

maxtrees=60 vars_to_try=4 trainfraction=0.7

maxdepth=50;

target median_house_value/level=interval;

input ocean_proximity/level=nominal;

input housing_median_age total_rooms total_bedrooms

population households median_income/level=interval;

partition rolevar=selected(train='1');

save file='C:/Users/000110888/Desktop/random_forest.bin';

run;

/*COMPUTING PREDICTED VALUES FOR TESTING DATA*/

data test;

set housing;

if(selected='0');

run;

proc hp4score data=test;

id median_house_value;

score file='C:/Users/000110888/Desktop/random_forest.bin'

out=predicted;

run;

/*DETERMINING 10%, 15%, AND 20% ACCURACY*/

data accuracy;

set predicted;

if(abs(median_house_value-P_median_house_value)

<0.10*median_house_value)

then ind10=1; else ind10=0;

if(abs(median_house_value-P_median_house_value)

115

<0.15*median_house_value)

then ind15=1; else ind15=0;

if(abs(median_house_value-P_median_house_value)

<0.20*median_house_value)

then ind20=1; else ind20=0;

run;

proc sql;

select sum(ind10)/count(*) as accuracy10,

sum(ind15)/count(*) as accuracy15,

sum(ind20)/count(*) as accuracy20

from accuracy;

quit;

In R:

#install.packages("randomForest")
library(randomForest)

housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(902881)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]

#BUILDING RANDOM FOREST REGRESSION
rf.reg<- randomForest(median_house_value∼ housing_median_age + total_rooms + total_bedrooms
+ population + households + median_income + ocean_proximity, data=train, ntree=150, mtry=5,
maxnodes=30)

#DISPLAYING FEATURE IMPORTANCE
print(importance(rf.reg,type=2))

116

IncNodePurity

housing_median_age 4.241691e+11

total_rooms 4.108330e+11

total_bedrooms 2.028437e+11

population 2.153154e+11

households 2.400010e+11

median_income 1.245747e+13

ocean_proximity 2.914203e+12

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
P_median_house_value<- predict(rf.reg, newdata=test)

#accuracy within 10%
accuracy10<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.10*test$median_house_value,1,0)
print(accuracy10<- sum(accuracy10)/length(accuracy10))

0.2857143

#accuracy within 15%
accuracy15<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.15*test$median_house_value,1,0)
print(accuracy15<- sum(accuracy15)/length(accuracy15))

0.4303797

#accuracy within 20%
accuracy20<-
ifelse(abs(test$median_house_value-P_median_house_value)<0.20*test$median_house_value,1,0)
print(accuracy20<- sum(accuracy20)/length(accuracy20))

0.5334539

In Python:

117

var_name loss_reduction

5 median_income 0.592797

6 ocean_proximity 0.154105

1 total_rooms 0.061499

0 housing_median_age 0.053247

3 population 0.051611

4 households 0.044158

2 total_bedrooms 0.042583

118

0.36203866432337434

0.5202108963093146

0.648506151142355

2

Example. Consider the data in the �le "pneumonia_data.csv". We construct a random forest
binary classi�er for this data set.

In SAS:

proc import out=pneumonia datafile="./pneumonia_data.csv" dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=pneumonia rate=0.8 seed=6132208

out=pneumonia outall method=srs;

run;

/*BUILDING RANDOM FOREST BINARY CLASSIFIER*/

119

proc hpforest data=pneumonia seed=115607

maxtrees=60 vars_to_try=4 trainfraction=0.7

maxdepth=50;

target pneumonia/level=binary;

input gender tobacco_use/level=nominal;

input age PM2_5/level=interval;

partition rolevar=selected(train='1');

save file='C:/Users/000110888/Desktop/random_forest.bin';

run;

/*COMPUTING PREDICTED VALUES FOR TESTING DATA*/

data test;

set pneumonia;

if(selected='0');

run;

proc hp4score data=test;

id pneumonia;

score file='C:/Users/000110888/Desktop/random_forest.bin'

out=predicted;

run;

/*COMPUTING PREDICTION ACCURACY FOR TESTING DATA*/

data predicted;

set predicted;

120

match=(pneumonia=lowcase(I_pneumonia));

run;

proc sql;

select sum(match)/count(*) as accuracy

from predicted;

quit;

In R:
pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(447558)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

#BUILDING RANDOM FOREST BINARY CLASSIFIER
library(randomForest)
rf.class<- randomForest(as.factor(pneumonia)∼ age + gender + tobacco_use + PM2_5, data=train,
ntree=150, mtry=4, maxnodes=30)

#DISPLAYING FEATURE IMPORTANCE
print(importance(rf.class,type=2))

MeanDecreaseGini

age 36.39492

gender 67.32295

tobacco_use 56.93959

PM2_5 151.83923

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
predclass<- predict(rf.class, newdata=test)
test<- cbind(test,predclass)

121

accuracy<- c()
n<- nrow(test)
for (i in 1:n)

accuracy[i]<- ifelse(test$pneumonia[i]==test$predclass[i],1,0)

print(accuracy<- sum(accuracy)/length(accuracy))

0.815864

In Python:

var_name loss_reduction

3 PM2_5 0.581401

1 age 0.233343

0 gender 0.095434

122

2 tobacco_use 0.089823

0.8121387283236994

2

Example. Consider the data in the �le "movie_data.csv". We construct random forest multino-
mial classi�er for this data set.

In SAS:

proc import out=movie

datafile="./movie_data.csv" dbms=csv replace;

run;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=movie rate=0.8 seed=550040

out=movie outall method=srs;

run;

/*BUILDING RANDOM FOREST MULTINOMIAL CLASSIFIER*/

proc hpforest data=movie seed=454545

123

maxtrees=150 vars_to_try=4 trainfraction=0.7

maxdepth=10;

target rating/level=ordinal;

input age member/level=nominal;

input age nmovies/level=interval;

partition rolevar=selected(train='1');

save file='C:/Users/000110888/Desktop/random_forest.bin';

run;

/*COMPUTING PREDICTED VALUES FOR TESTING DATA*/

data test;

set movie;

if(selected='0');

run;

proc hp4score data=test;

id rating;

score file='C:/Users/000110888/Desktop/random_forest.bin'

out=predicted;

run;

/*COMPUTING PREDICTION ACCURACY FOR TESTING DATA*/

data predicted;

set predicted;

match=(rating=lowcase(I_rating));

run;

124

proc sql;

select sum(match)/count(*) as accuracy

from predicted;

quit;

In R:
movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(566222)
sample <- sample(c(TRUE, FALSE), nrow(movie.data),replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

#BUILDING RANDOM FOREST MULTINOMIAL CLASSIFIER
library(randomForest)
rf.class<- randomForest(as.factor(rating)∼ age + gender + member + nmovies, data=train, ntree=150,
mtry=4, maxnodes=30)

#DISPLAYING FEATURE IMPORTANCE
print(importance(rf.class,type=2))

MeanDecreaseGini

age 64.973483

gender 10.542498

member 5.531971

nmovies 25.470534

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
predclass<- predict(rf.class, newdata=test)
test<- cbind(test,predclass)

accuracy<- c()
n<- nrow(test)

125

for (i in 1:n)
accuracy[i]<- ifelse(test$rating[i]==test$predclass[i],1,0)

print(accuracy<- sum(accuracy)/length(accuracy))
0.3212435

In Python:

126

var_name loss_reduction

0 age 0.572954

3 nmovies 0.269890

2 member 0.084660

1 gender 0.072495

0.3026315789473684

2

127

BOOSTING METHOD

Another ensemble method is known as boosting. Boosting as opposed to bagging doesn't involve
bootstrap sampling. Instead, models are generated sequentially and iteratively, meaning that it
is necessary to have information from iteration i before conducting iteration i + 1. Note that the
boosting process cannot be parallelized (modeling cannot be done on several trees simultaneously),
unlike bagging, which is straightforwardly parallelizable.

The method of boosting was introduced by Michael Kearns and Leslie Valiant in 1989. The ques-
tion posed asked whether it was possible to combine, in some fashion, a selection of weak machine
learning models (termed weak learners) to produce a single strong machine learning model (a
strong learner). Weak, in this instance means a model that is only slightly better than chance at
predicting a response. Correspondingly, a strong learner is well-correlated to the true response.

This motivated the concept of boosting. The idea is to build iteratively weak machine learning
models on a continually-updated response variable in the training data set and then add them to-
gether to produce a �nal, strong learning model. This di�ers from bagging, which simply averages
the models on separate bootstrapped samples.

A basic boosting algorithm proceeds as follows:

1. The initial estimator is set to zero, that is, f̂(x) = 0, and the residuals are set to current responses
r = y, for all elements in the training set.
2. The number of boosting trees B is speci�ed and then the loop over b = 1, ..., B is run:

Step 1. A weak-learning tree f̂ b with k splits is grown on the training data (x, r).

Step 2. Estimator f̂ is updated as f̂new(x) = f̂old(x) + λ f̂ b(x) for some scale parameter
λ, 0 < λ < 1, called the shrinkage rate (or learning rate).
Step 3. Residuals are updated as rnew = rold − λ f̂ b(x).

3. The �nal boosted model is computed as the sum of individual weak learners, f̂(x) =
∑B

b=1 λ f̂
b(x).

Notice that each subsequent tree is �tted to the residuals of the data. Hence each subsequent
iteration is slowly improving the overall strong learner by improving its performance in poorly-
performing regions of the feature space. It can be seen that this procedure is heavily dependent on
the order in which the trees are grown. This process is said to learn slowly. Such slow learning
procedures tend to produce well-performing machine learning models.

In the boosting algorithm, there are three hyperparameters: the number of boosted trees B, the
number of splits k, and the shrinkage rate λ.

128

GRADIENT BOOSTING METHOD

The gradient boosting method combines the method of gradient descent (or steepest de-
scent) and the boosting algorithm. It was �rst introduced by Jerome Friedman in 1999.

We present a simple example to explain how gradient boosting works. Suppose y depends on x
through a non-linear relationship y = f(x) depicted in the scatterplot below.

We initially predict the response y by the sample mean ȳ, that is, we let f̂0(x) = ȳ.

129

To improve our prediction, we will focus on the residuals (i.e., the vertical distances between the
observed y's and the prediction ȳ). The residuals r1 = y − ȳ are shown as the vertical red lines in
the �gure below.

130

Next, we plot the residuals against x.

131

In the next step, we use the residuals r1 as the target variable. Suppose for simplicity, we build a
very simple regression tree, with one split and two terminal nodes (trees like this are called decision
stumps). Suppose we split at 15, and so the decision stump looks this:

We then add the predicted r̄1 to the initial prediction ȳ to reduce residuals. However, the gradient
boosting algorithm does not simply add r̄1 to ȳ as it over�ts the model to the training data. Instead,
r̄1 is scaled down by the shrinkage rate (or learning rate) λ, and then added to ȳ. For instance, we
can take λ = 0.2. Then for x ≤ 15, f̂1(x) = f̂0(x) + λ r̄1 = ȳ + λr̄1 = 11.7 + (0.2)(2.4) = 11.8, and
for x > 15, f̂1(x) = 11.7 + (0.2)(−1.3) = 11.0. We plot this �tted function in the �gure below.

132

Now, in the next step, we update the residuals to r2 = y − f̂1(x) and build a regression tree, which
will give us another split and another pair of estimates r̄2. We then update the �tted function
f̂2(x) = f̂1(x) + λr̄2.

We iterate these steps until the model prediction stops improving. The �gures below schematically
show the boosting process for some number of iterations.

Further, putting the gradient boosting algorithm into rigorous mathematical terms, we can write:

1. We initialize the model with a constant value f̂0(x) = arg minγ
∑n

i=1 L(yi, γ) where by L we
denote a pre-speci�ed loss function.

Example. For the squared loss function L = (yi− γ)2, the value of γ that minimizes
∑n

i=1 L(yi, γ)
solves

∂

∂γ

n∑
i=1

(yi − γ)2 = −2
n∑
i=1

(yi − γ) = −2
n∑
i=1

yi + 2nγ = 0.

Solving we get γ = ȳ. Thus, for the squared loss function, we initialize the model with f̂0(x) = ȳ. 2

133

2. We de�ne b as our iteration counter that will range between 1 and B. For each iteration b, we
conduct the following steps:

Step 1. We compute residuals according to the formula

rib = −
[∂L(yi, f(xi)

)
∂f(xi)

]
f(xi)=f̂b−1(xi)

, i = 1, . . . , n.

Example. For the squared loss function, we compute

rib = −
[∂L(yi, f(xi)

)
∂f(xi)

]
f(xi)=f̂b−1(xi)

= −
[∂(yi − f(xi)

)2
∂f(xi)

]
f(xi)=f̂b−1(xi)

= 2
(
yi − f̂b−1(xi)

)
.

Ignoring the multiplicative constant 2, we see that the residuals rib are the distances between the
observed yi and �tted f̂b−1(xi) (so, these are residuals in the regular sense). 2

Step 2. We train a regression tree with target rib and feature x. This tree de�nes terminal node
regions Rjb, j = 1, . . . , Jb.

Step 3. For each region, we compute optimal estimators

γjb = arg min
γ

∑
xi∈Rjb

L
(
yi, f̂b−1(xi) + γ

)
, j = 1, . . . , Jb.

Example. For the squared loss function, we compute

γjb = arg min
γ

∑
xi∈Rjb

L
(
yi, f̂b−1(xi) + γ

)
= arg min

γ

∑
xi∈Rjb

(
yi − f̂b−1(xi)− γ

)2
.

The value of γ that minimizes this sum is the solution of the equation:

∂

∂γ

∑
xi∈Rjb

(
yi − f̂b−1(xi)− γ

)2
= 0,

−2
∑
xi∈Rjb

(
yi − f̂b−1(xi)− γ

)
= 0,

∑
xi∈Rjb

(
yi − f̂b−1(xi)

)
=
∑
xi∈Rjb

γ = γ njb,

where njb is the number of data points in the region Rjb. Finally, we get

γ =
1

njb

∑
xi∈Rjb

(
yi − f̂b−1(xi)

)
=

rjb
2njb

= r̄jb/2.

Ignoring the 2 in the denominator, we see that the estimator γ is the average of the residuals. 2

134

Step 4. We update the model as

f̂b(x) = f̂b−1(x) + λ

Jb∑
j=1

γjbI(x ∈ Rjb)

where the shrinkage (or learning) rate λ is a pre-de�ned constant between 0 and 1 (typically, 0.1 or
smaller), and I(·) is the indicator function (1 if true, and 0, otherwise).

Example. Consider the case of the squared loss function. Suppose xi belongs to the region Rjb.
We estimate fb(xi) by

f̂b(xi) = f̂b−1(xi) + λ

Jb∑
j=1

γjbI(x ∈ Rjb) = f̂b−1(xi) + λ r̄jb/2 = fb−1(xi) + λ1 r̄jb.

Here λ1 absorbed the constant 2, but still is a constant between 0 and 1, and can be considered the
learning rate. 2

Remark. The method of gradient boosting is closely related to the method of gradient de-
scent (or steepest descent), which is a �rst-order iterative optimization algorithm for �nding
a local minimum of a di�erentiable function. The idea is to take repeated steps in the opposite
direction of the gradient of the function at the current point because this is the direction of the
steepest descent. The descent is depicted in the �gure below. Note that if the learning rate (length
of step) is small, one would descend slowly along one slope. However, one can choose to take large
learning steps. Convergence is still guaranteed but it will take more time and computations to reach
the minimum.

135

Remark. In the literature, the method of gradient boosting of a regression tree goes by a variety
of names: gradient boosting machine (GBM), functional gradient boosting, multiple additive re-
gression trees (MART), boosted regression trees (BRT), generalized boosting model, or tree net. In
R, we will �t the extreme gradient boosting (XGBoost) method which is a popular modern imple-
mentation of the gradient boosting method with some extensions, like second-order optimization.

Example. We apply the gradient boosting algorithm to the data in the �le "housing_data.csv".
The codes below run the algorithm and output the list of features in the order of their importance,
and also compute the proportion of correctly predicted median house prices within 10%, 15%, and
20% of the true values.

In SAS: Due to the large memory required to run the model, we have to resort to SAS Enterprise
Miner Workstation 14.2 (in Student Virtual Lab). It runs on the SAS Viya platform that utilizes
Cloud Analytics Service (CAS).

First, we go to Student Virtual Lab (SVL), open SAS, import the data set into SAS, and store it
in the sasuser library. The code is:

proc import out=sasuser.housing datafile="./housing_data.csv" dbms=csv replace;

run;

Then we open SAS Enterprise Miner Workstation (EM), create a new project named, say, "XG-
BoostReg", and specify SAS Server Directory as the desktop in SVL. Then right-click "Data
Sources" and extract the housing data set from the sasuser library. We also change the role of
"median_house_value" to "target". Next, we right-click "Diagrams" and create a new process
�ow diagram depicted here:

We can set speci�cations for data partition (click on the node "Data Partition") to 80% of training
data, 0% of validation data, and 20% of testing data. See the snippet below.

136

Further, it is recommended to set the speci�cations for the "Gradient Boosting" node to the ones
displayed here:

The next step is to right-click on the "Save Data" node and run the path. The output is the
scored testing data set that is located in the SAS data �le that can be retrieved from the folder
"XGBooostReg" on the desktop. The path to the �le is

"XGBoostReg/Workspaces/EMWS1/EMSave/em_save_test.sas7bdat".

Once we locate this �le, we open it in SAS (in the library "Tmp1") and run the following lines of
code to compute the proportion of predictions with 10%, 15%, and 20% of the true values.

137

data accuracy;

set tmp1.em_save_test;

ind10=(abs(R_median_house_value)<0.10*median_house_value);

ind15=(abs(R_median_house_value)<0.15*median_house_value);

ind20=(abs(R_median_house_value)<0.20*median_house_value);

run;

proc sql;

select sum(ind10)/count(*) as accuracy10,

sum(ind15)/count(*) as accuracy15,

sum(ind20)/count(*) as accuracy20

from accuracy;

quit;

Remark. We can save the SAS code created in EM and run it in SAS 9.4, but SAS keeps crashing
because the code requires a lot of memory. Alternatively to EM, one can create a session in CAS
and run SAS code in that session. 2.

In R:

#install.packages("xgboost")
library(xgboost)

housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(203945)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]

train.x<- data.matrix(train[-8])
train.y<- data.matrix(train[8])

138

test.x<- data.matrix(test[-8])
test.y<- data.matrix(test[8])

#FITTING EXTREME GRADIENT BOOSTED REGRESSION TREE
xgb.reg<- xgboost(data=train.x, label=train.y, max.depth=6, eta=0.01,
subsample=0.8, colsample_bytree=0.5, nrounds=1000, objective="reg:linear")
#eta=learning rate, colsample_bytree de�nes what percentage of features (columns)
will be used for building each tree

#DISPLAYING FEATURE IMPORTANCE
print(xgb.importance(colnames(train.x), model=xgb.reg))

Feature Gain Cover Frequency

1: median_income 0.46805085 0.23565339 0.16615392

2: ocean_proximity 0.18991669 0.07413562 0.03699257

3: total_rooms 0.10167336 0.15539794 0.19189115

4: population 0.06185199 0.16370695 0.16587879

5: households 0.06151389 0.14717595 0.14897076

6: housing_median_age 0.06136185 0.09601853 0.12748556

7: total_bedrooms 0.05563136 0.12791161 0.16262725

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(xgb.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)
print(sum(accuracy10)/length(accuracy10))

0.3344768

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)
print(sum(accuracy15)/length(accuracy15))

0.4716981

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)
print(sum(accuracy20)/length(accuracy20))

0.5763293

139

In Python:

var_name loss_reduction

5 median_income 0.663030

6 ocean_proximity 0.132614

3 population 0.046976

0 housing_median_age 0.045639

2 total_bedrooms 0.040047

1 total_rooms 0.039412

4 households 0.032283

140

0.3602811950790861

0.47451669595782076

0.5905096660808435

2

Example. Here we apply the gradient boosting algorithm to the data in the �le "pneumonia_data.csv".
The codes below run the binary classi�er algorithm and output the list of features in the order of
their importance, and also compute prediction accuracy for a cut-o� of 0.5.

Remark. With binary classi�ers, a binary cross entropy loss function is used. It is de�ned as
L(yi, γ) = yi ln γ + (1− yi) ln(1− γ). To minimize

∑n
i=1 L(yi, γ) with respect to γ, we solve

∂

∂γ

n∑
i=1

[
yi ln γ + (1− yi) ln(1− γ)

]
=

n∑
i=1

[yi
γ
− 1− yi

1− γ

]
=
nȳ

γ
− n− nȳ

1− γ
= 0.

From here, γ = ȳ. 2

141

In SAS: First we save the data in "pneumonia_data.csv" in the sasuser library by running proc

import:

proc import out=sasuser.pneumonia datafile="./pneumonia_data.csv"

dbms=csv replace;

run;

Then create a new project in the Enterprise Miner Workstation. The process �ow diagram is:

For the "Data Partition" node, we speci�ed 80% training, 0% validating, and 20% testing sets. The
speci�cations for "Gradient Boosting" node are set at:

142

Note: Shrinkage rate should be speci�ed as 0.1 (0.01 is too small), and the assessment measure
should be "Decision" to run a binary classi�cation.

Once we run the path, the output is written into a SAS data �le "em_save_test.sas7bdat". We
open it in tmp1 folder and run these lines of code:

data tmp1.em_save_test;

set tmp1.em_save_test;

match=(EM_CLASSIFICATION=EM_CLASSTARGET);

run;

proc sql;

select sum(match)/count(*) as accuracy

from tmp1.em_save_test;

quit;

143

In R:
library(xgboost)

pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

pneumonia.data$pneumonia<- ifelse(pneumonia.data$pneumonia=="yes",1,0)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(447558)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

#FITTING EXTREME GRADIENT BOOSTED BINARY CLASSIFIER
xgb.class<- xgboost(data=train.x, label=train.y, max.depth=6, eta=0.1, subsample=0.8,
colsample_bytree=0.5, nrounds=1000, objective="binary:logistic")

#DISPLAYING FEATURE IMPORTANCE
print(xgb.importance(colnames(train.x), model=xgb.class))

Feature Gain Cover Frequency

1: PM2_5 0.62919417 0.51274361 0.50292653

2: age 0.20259705 0.35043859 0.39769614

3: gender 0.09556518 0.07007141 0.05678705

4: tobacco_use 0.07264360 0.06674638 0.04259029

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob<- predict(xgb.class, test.x)

len<- length(pred.prob)
pred.pneumonia<- c()
match<- c()

144

for (i in 1:len){
pred.pneumonia[i]<- ifelse(pred.prob[i]>=0.5, 1,0)
match[i]<- ifelse(test.y[i]==pred.pneumonia[i], 1,0)

}

print(prop<- sum(match)/len)

0.878187

In Python:

145

var_name loss_reduction

3 PM2_5 0.623300

1 age 0.159204

0 gender 0.111911

2 tobacco_use 0.105585

146

0.8786127167630058

2

Example. We use the gradient boosting algorithm to solve the multinomial classi�cation predic-
tion problem on the data in the �le "movie_data.csv".

Remark. For multinomial classi�ers, a multi-class cross-entropy loss function is applied. Suppose
there are c classes, and nj observations belong to class j, j = 1, . . . , c, where n1 + . . . , nc = n.
Denote by tij an indicator of yi belonging to class j. Note that

∑n
i=1 tij = nj, j = 1, . . . , c. The

loss function is given by L(yi, γ1, . . . , γc) = ti1 ln γ1 + ti2 ln γ2 + · · · + tic ln γc = ti1 ln γ1 + ti2 ln γ2 +
· · · + tic ln(1− γ1 − γ2 − · · · − γc−1). To minimize

∑n
i=1 L(yi, γ1, . . . , γc) with respect to γ1, . . . , γc,

we solve for j = 1, . . . , c− 1,

∂

∂γj

n∑
i=1

[
ti1 ln γ1+ti2 ln γ2+· · ·+tic ln(1−γ1−γ2−· · ·−γc−1)

]
=

n∑
i=1

[tij
γj
− tjc

1− γ1 − γ2 − · · · − γc−1

]
=
nj
γj
− nc

1− γ1 − γ2 − · · · − γc−1
=
nj
γj
− nc
γc

= 0, or, γj =
nj
nc
γc.

147

Since γ1 + γ2 + · · ·+ γc = 1, we have that γc
(n1

nc
+ · · ·+ nc−1

nc
+ 1
)

= 1, or γc =
nc

n1 + · · ·+ nc
=
nc
n
,

and γj =
nj
nc
· nc
n

=
nj
n
, j = 1, . . . , c. 2.

In SAS: We run proc import to create a SAS data �le sasuser.movie:

proc import out=sasuser.movie datafile="./movie_data.csv"

dmbs=csv replace;

run;

Then in EM we create the following �ow diagram:

For the "Data Partition" node, we speci�ed 80% training, 0% validating, and 20% testing sets. The
speci�cations for "Gradient Boosting" nodes are set at:

148

Next we run the path and open the resulting data �le "em_save_test.sas7bdat" in the tmp1 library.
The accuracy of prediction is evaluated by submitting this code:

data tmp1.em_save_test;

set tmp1.em_save_test;

match=(EM_CLASSIFICATION=EM_CLASSTARGET);

run;

proc sql;

select sum(match)/count(*) as accuracy

from tmp1.em_save_test;

quit;

149

In R:
library(xgboost)

movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(103321)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
train.y<- train.y-1 #must range between 0 and 4 for prediction
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])
test.y<- test.y-1

#FITTING GRADIENT BOOSTED MULTINOMIAL CLASSIFIER
xgb.mclass<- xgboost(data=train.x, label=train.y, max.depth=6, eta=0.1, subsample=0.8, colsam-
ple_bytree=0.5, nrounds=1000, num_class=5, objective="multi:softprob")

#DISPLAYING FEATURE IMPORTANCE
print(xgb.importance(colnames(train.x), model=xgb.mclass))

Feature Gain Cover Frequency

1: age 0.66514614 0.51438911 0.56634783

2: nmovies 0.21685109 0.29686671 0.26099577

3: gender 0.06530198 0.09410162 0.08994277

4: member 0.05270080 0.09464255 0.08271363

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob <- predict(xgb.mclass, test.x, reshape=TRUE)
pred.prob<- as.data.frame(pred.prob)
colnames(pred.prob)<- 0:4

pred.class<- apply(pred.prob, 1, function(x) colnames(pred.prob)[which.max(x)])

match<- c()
n<- length(test.y)
for (i in 1:n) {

match[i]<- ifelse(pred.class[i]==as.character(test.y[i]),1,0)

150

}

print(accuracy<- sum(match)/n)

0.2435897

151

var_name loss_reduction

0 age 0.510458

3 nmovies 0.323769

1 gender 0.092721

2 member 0.073052

0.3223684210526316

2

K-NEAREST NEIGHBOR REGRESSION AND CLASSIFICATION

The k Nearest-neighbor (kNN) algorithm can be used for regression as well as binary multi-
nomial classi�cations. The space is divided into classes with k nearest neighbors in each class.
Euclidean distance is used to measure the distance between neighbors. The Euclidean distance
between two d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) in our regular Euclidean

geometry is de�ned as distance(x,y) =
√

(x1 − y1)2 + · · ·+ (xd − yd)2. For regression, the mean
value of the class is used for prediction. In classi�cation, the proportion of observations in each

152

category is computed as predicted probabilities within each class.

As an illustration, the �gure below depicts the partitioning of the space into three classes (red,
blue, and green). Surely, some outlying observations are misclassi�ed as they are closer to the
observations in some other class.

Historical Note: The kNN algorithm was �rst described in "Discriminatory Analysis. Nonpara-
metric Discrimination: Consistency Properties", by Evelyn Fix and Joseph Hodges, report, UC
Berkeley, 1951.

Example. We apply the kNN algorithm to build a regression for the data set in the �le "hous-
ing_data.csv".

In SAS: We save the data �le in the sasuser library using the following code.

proc import out=sasuser.housing datafile="./housing_data.csv" dbms=csv replace;

run;

Then we use SAS Enterprise miner to �t a k nearest-neighbor regression (termed Memory-Based
Reasoning (MBR), using the path diagram:

153

For the "Data Partition" node, we specify to split the data into 70% training, 10% validation,
and 20% testing sets. The testing set contains 569 observations, the validation test contains 284
observations, and the training set contains 1989 observations. In the MBR node, we specify the
number of neighbors: 569/5 = 113.8 ≈ 114 for k = 5 classes, 569/6 = 94.8 ≈= 95 for k = 6 classes,
etc. We run the paths and note the value for the MSE for the testing set (summarized in the table
below).

Number of classes Number of neighbors MSE
5 114 6918425992
6 95 6830858760
7 81 6719387249
8 71 6646008646
9 63 6605133365
10 57 6586164839

We can see that MSE starts leveling out at k = 9, so we pick that number of classes and run the
full path that includes scoring of the testing set. The diagram is given in the following �gure:

Next, we locate the �le with predictions "./Workspaces/EMWS1/EMSave/em_save_test.sas7bdat",
open it in SAS (in the library "Tmp1") and run the code below to compute the proportion of pre-
dictions with 10%, 15%, and 20% of the actual values, and plot the actual and predicted values.

/*COMPUTING ACCURACY WITHIN 10%, 15%, AND 20%*/

data accuracy;

set tmp1.em_save_test;

ind10=(abs(R_median_house_value)<0.10*median_house_value);

ind15=(abs(R_median_house_value)<0.15*median_house_value);

ind20=(abs(R_median_house_value)<0.20*median_house_value);

154

obs_n=_N_;

run;

proc sql;

select mean(ind10) as accuracy10,

mean(ind15) as accuracy15, mean(ind20) as

accuracy20

from accuracy;

quit;

/*PLOTTING ACTUAL AND PREDICTED VALUES FOR TESTING DATA*/;

goptions reset=all border;

title1 "k-Nearest Neighbor (KNN) Regression";

symbol1 interpol=join value=dot color=magenta;

symbol2 interpol=join value=dot color=blue;

legend1 value=("actual" "predicted")

position=(top right inside) label=none;

proc gplot data=accuracy;

plot median_house_value*obs_n

EM_PREDICTION*obs_n/ overlay legend=legend1;

run;

155

In R:

housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(880352)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]

train.x<- data.matrix(train[-8])
train.y<- data.matrix(train[8])
test.x<- data.matrix(test[-8])
test.y<- data.matrix(test[8])

#TRAINING K-NEAREST NEIGHBOR REGRESSION
install.packages("caret") #Classi�cation and Regression Training
library(caret)
print(train(median_house_value∼ ., data=train, method="knn"))

156

k RMSE

5 81040.04

7 79199.11

9 78165.81

RMSE was used to select the optimal model using the smallest value.

The final value used for the model was k = 9.

#FITTING OPTIMAL KNN REGRESSION (K=9)
knn.reg<- knnreg(train.x, train.y, k=9)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(knn.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)
print(mean(accuracy10))

0.1372881

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)
print(mean(accuracy15))

0.1830508

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)
print(mean(accuracy20))

0.2610169

#PLOTTING ACTUAL AND PREDICTED VALUES FOR TESTING DATA
x<- 1:length(test.y)
plot(x, test.y, type="l", lwd=2, col="magenta", main="KNN Regression", panel.�rst=grid())
lines(x, pred.y, lwd=2, col="dodgerblue")
legend("topright", c("actual", "predicted"), lty=1, lwd=2,col=c("magenta","dodgerblue"))

157

In Python:

158

accuracy within 10% = 0.1213

accuracy within 15% = 0.1898

accuracy within 20% = 0.2689

159

2

Example. For the data set "pneumonia_data.csv", we build the kNN binary classi�er.

In SAS:

In SAS Enterprise Miner, we partition the data into 70% training, 10% validation, and 20% testing
sets (346 rows), and run the MBR node, varying the number of neighbors (= 346/k) and record the
misclassi�cation rate for the testing set. The results are summarized here:

160

Number of classes Number of neighbors Misclassi�cation Rate
3 115 0.321
4 87 0.301
5 69 0.321
6 58 0.318
7 49 0.321
8 43 0.335

We choose to utilize k = 4 classes because it results in the smallest misclassi�cation rate, and run
the full path:

Now we open the SAS �le with scored data "em_save_test.sas7dat" in the tmp1 folder and com-
pute the accuracy of prediction by running the following SAS code:

/*COMPUTING PREDICTION ACCURACY*/

data accuracy;

set tmp1.em_save_test;

match=(em_classification=em_classtarget);

run;

proc sql;

select mean(match) as accuracy

from accuracy;

quit;

In R:
pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

161

pneumonia.data$pneumonia<- ifelse(pneumonia.data$pneumonia=="yes",1,0)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(704467)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

#TRAINING K-NEAREST NEIGHBOR BINARY CLASSIFIER
library(caret)
print(train(as.factor(pneumonia)∼ ., data=train, method="knn"))

k Accuracy

5 0.6704615

7 0.6781109

9 0.6807456

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 9.

#FITTING OPTIMAL KNN BINARY CLASSIFIER (K=9)
knn.class<- knnreg(train.x, train.y, k=9)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob<- predict(knn.class, test.x)

len<- length(pred.prob)
pred.y<- c()
match<- c()
for (i in 1:len){

pred.y[i]<- ifelse(pred.prob[i]>=0.5, 1,0)
match[i]<- ifelse(test.y[i]==pred.y[i], 1,0)

}
print(paste("accuracy=",round(mean(match),digits=4)))

"accuracy= 0.7072"

162

#alternative (frugal) way
pred.y1<- �oor(0.5+predict(knn.class, test.x))
print(paste("accuracy=", round(1-mean(test.y!=pred.y1),digits=4)))

"accuracy= 0.7072"

In Python:

163

0.6705202312138728

2

Example. Consider the data in the �le "movie_data.csv". We �t a multinomial classi�er using
the kNN algorithm.

In SAS:

In SAS Enterprise Miner, we run the path ending in the MBR node for various numbers of classes (see
the table below). For the analysis, we choose k = 5 as it corresponds to the minimal misclassi�cation
rate for the testing set (157 rows).

Number of classes Number of neighbors Misclassi�cation Rate
3 52 0.720
4 39 0.739
5 31 0.707
6 26 0.707
7 22 0.726

We use k = 5 and run the full path depicted in the �gure below.

We open the scored testing set in the tmp1 folder in SAS and compute the accuracy of prediction.

164

/*COMPUTING PREDICTION ACCURACY*/

data accuracy;

set tmp1.em_save_test;

match=(em_classification=em_classtarget);

run;

proc sql;

select mean(match) as accuracy

from accuracy;

quit;

In R:
movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(123857)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

#FITTING K-NEAREST NEIGHBOR MULTINOMIAL CLASSIFIER
#k=3 reasonably maximizes prediction accuracy for testing set
library(caret)
knn.mclass<- knnreg(train.x, train.y, k=3)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- round(predict(knn.mclass, test.x), digits=0)
print(paste("accuracy=", round(1-mean(test.y!=pred.y),digits=4)))

accuracy= 0.2133

165

In Python:

accuracy= 0.3157894736842105

2

166

SUPPORT VECTOR MACHINE REGRESSION AND
CLASSIFICATION

Historical Note. Support vector machine (SVM) analysis is a machine learning tool for regression
and classi�cation. It was �rst proposed by Vladimir Vapnik in his book "The Nature of Statistical
Learning Theory", Springer-Verlag, New York, 1995.

Support Vector Regression

The goal of Support Vector Regression is to �nd a function f(x1, ..., xk) that deviates from the
observed response y by a value not greater than a pre-speci�ed ε for each training point, and at the
same time is as �at as possible.

Let x =

x11 x12 . . . x1k
· · ·

xn1 xn2 . . . xnk

 be the n × k matrix of predictor values in the training set. Let

β = (β1, . . . , βk)
′ be the column-vector of slopes, and b = (b1, . . . , bn)′ be the column-vector of

intercepts. To �nd a linear function f(x) = xβ + b and ensure that it is as �at as possible, we need

to �nd f(x) with the minimal norm J(β) =
1

2
β′β. We also need to observe the constraint that all

residuals do not exceed ε, that is,
∣∣yi − xiβ − b

∣∣ ≤ ε, i = 1, ..., n, where xi = (xi1, ..., xik).

It is possible that no such function f exists. To deal with the infeasible constraints, two non-
negative slack variables ξi and ξ∗i are introduced for each data point. The objective now is to

minimize (the expression is termed the primal formula) J(β) =
1

2
β′β + C

n∑
i=1

(ξi + ξ∗i) such that

yi − xiβ − b ≤ ε + ξi, and xiβ + b − yi ≤ ε + ξ∗i , for all i = 1, . . . , n. Here the constant C is
the box constraint, a positive numeric value that controls the penalty imposed on observations
that lie outside the ε-margin and helps to prevent over�tting (it is also known as regularization
parameter). This value determines the trade-o� between the �atness of f and the amount up to
which deviations larger than ε are tolerated.

The optimization problem is computationally simpler if formulated in terms of Lagrange multi-
pliers αi and α

∗
i for the ith individual, i = 1, . . . , n. This leads to minimization of Lagrangian

(the expression is termed the dual formula):

L(α) =
1

2

n∑
i=1

n∑
j=1

(αi − α∗i)(αj − α∗j)xix′j + ε

n∑
i=1

(
αi + α∗i

)
+

n∑
i=1

(
α∗i − αi

)
yi,

subject to the constraints:

n∑
i=1

(
αi − α∗i

)
= 0, and 0 ≤ αi, α

∗
i ≤ C.

167

The β parameter is found as

β =
n∑
i=1

(
αi − α∗i

)
x′i.

The function f is calculated according to the formula:

f(x) =
n∑
i=1

(
αi − α∗i

)
xi x

′ + b.

To obtain the optimal solution, the Karush-Kuhn-Tucker (KKT) complementarity condi-
tions are used as optimization constraints. For linear support vector regression they are as follows:
αi(ε+ξi−yi+xiβ+b) = 0, α∗i (ε+ξ∗i +yi−xiβ−b) = 0, ξi(C−αi) = 0, and ξ∗i (C−α∗i) = 0, for any
i = 1, . . . , n. These conditions indicate that all observations strictly inside the epsilon tube have
Lagrange multipliers αi = α∗i = 0. Those observations for which Lagrange multipliers are non-zero
(observations on the boundary of the epsilon tube) are called support vectors.

Some regression problems, however, cannot be adequately described using a linear model. In such a
case, the Lagrange dual formulation allows it to be extended to nonlinear functions, using kernels.
Nonlinear support vector regression �nds the coe�cients that minimize the Lagrangian

L(α) =
1

2

n∑
i=1

n∑
j=1

(αi − α∗i)(αj − α∗j)G
(
xi, xj

)
+ ε

n∑
i=1

(
αi + α∗i

)
+

n∑
i=1

(
α∗i − αi

)
yi,

where G
(
xi, xj

)
is the kernel function. Several types of kernels are used: G

(
xi, xj

)
= xix

′
j is a linear

kernel, G
(
xi, xj

)
=
(
1+xix

′
j

)d
is a polynomial kernel of degree d, G

(
xi, xj

)
= exp

(
−||xi−xj||2

)
is a radial basis function (RBF) or radial or Gaussian kernel, and G

(
xi, xj

)
= tanh(xix

′
j)

is a sigmoid kernel, where tanh(x) = (ex − e−x)/(ex + e−x) is the hyperbolic function (see the
illustrations below).

168

Example. We apply the support vector regression to the data in the �le "housing_data.csv". The
codes below run the analysis and compute the prediction accuracy within 10%, 15%, and 20% of
the true values. SAS Enterprise Miner doesn't handle this method, so we use R and Python only.

In R:
housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

housing.data$ocean_proximity<- ifelse(housing.data$ocean_proximity=='<1H OCEAN', 1, ifelse(housing.data$ocean_proximity=='INLAND',2,
ifelse(housing.data$ocean_proximity=='NEAR BAY',3,4)))

169

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(234564)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]
test.x<- data.matrix(test[-8])
test.y<- data.matrix(test[8])

install.packages("e1071")
library(e1071)

#FITTING SVR WITH LINEAR KERNEL
svm.reg<- svm(median_house_value ∼ housing_median_age+total_rooms+total_bedrooms
+population+households+median_income+ocean_proximity, data=train, kernel="linear")

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(svm.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Linear Kernel')

"Linear Kernel"

print(paste('within 10%:', round(mean(accuracy10),4)))

"within 10%: 0.2212"

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.3583"

print(paste('within 20%:', round(mean(accuracy20),4)))

170

"within 20%: 0.5031"

#FITTING SVR WITH POLYNOMIAL KERNEL
svm.reg<- svm(median_house_value ∼ housing_median_age+total_rooms+total_bedrooms
+population+households+median_income+ocean_proximity, + data=train, kernel="poly")

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(svm.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Polynomial Kernel')

"Polynomial Kernel"

print(paste('within 10%:', round(mean(accuracy10),4)))

"within 10%: 0.2414"

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.3536"

print(paste('within 20%:', round(mean(accuracy20),4)))

"within 20%: 0.4408"

#FITTING SVR WITH RADIAL KERNEL
svm.reg<- svm(median_house_value ∼ housing_median_age+total_rooms+total_bedrooms
+population+households+median_income+ocean_proximity,+ data=train, kernel="radial")

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(svm.reg, test.x)

171

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Radial Kernel')

"Radial Kernel"

print(paste('within 10%:', round(mean(accuracy10),4)))

"within 10%: 0.3676"

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.5249"

print(paste('within 20%:', round(mean(accuracy20),4)))

"within 20%: 0.6526"

#FITTING SVR WITH SIGMOID KERNEL
svm.reg<- svm(median_house_value ∼ housing_median_age+total_rooms+total_bedrooms
+population+households+median_income+ocean_proximity, + data=train, kernel="sigmoid")

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(svm.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Sigmoid Kernel')

172

"Sigmoid Kernel"

print(paste('within 10%:', round(mean(accuracy10),4)))

"within 10%: 0.0047"

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.0093"

print(paste('within 20%:', round(mean(accuracy20),4)))

"within 20%: 0.014"

We see that the support vector regression with the radial kernel has the best prediction accuracy,
thus, it's the best-�tted model.

In Python:

173

174

175

Linear Kernel Prediction Accuracy

within 10%: 0.1494

within 15%: 0.2267

within 20%: 0.2953

176

Polynomial Kernel Prediction Accuracy

within 10%: 0.1019

within 15%: 0.1634

within 20%: 0.2179

Radial Kernel Prediction Accuracy

within 10%: 0.1002

within 15%: 0.1634

within 20%: 0.2197

Sigmoid Kernel Prediction Accuracy

within 10%: 0.0967

within 15%: 0.1617

within 20%: 0.2179

Comparing prediction accuracies, we see that the SVR with the linear kernel �ts the data the
best. 2

177

Support Vector Machine for Binary Classi�er

For binary response, a support vector machine classi�es data by �nding the best hyperplane that
separates data points of one class from those of the other class. The best hyperplane for an SVM
is the one with the largest margin between the two classes. Margin means the maximal width of
the slab parallel to the hyperplane that has no interior data points. The support vectors are
the data points that are closest to the separating hyperplane; these points are on the boundary of
the slab. In mathematical terms, the response variable yi = ±1 represents the category that the
ith individual belongs to. The hyperplane has the equation f(x) = xβ + b = 0. To �nd the best
separating hyperplane, we �nd β and b that minimize β′β such that for all i = 1, . . . , n, yif(xi) ≥ 1.
The support vectors are the points on the boundary, that is, those for which yif(xi) = 1. The

dual formulation in this setting is to maximize with respect to α
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yi yjxix
′
j,

subject to the constraints
n∑
i=1

yiαi = 0, and 0 ≤ αi ≤ C, i = 1, . . . , n. Some binary classi�cation

problems can't be solved with a simple hyperplane. In this case, kernels (polynomial, radial, or
sigmoid) are used. The resulting separating borders are schematically depicted in the �gure below.
Note di�erent shapes for di�erent kernels.

178

Example. We use the support vector machine binary classi�er for the data "pneumonia_data.csv".

In SAS: In Enterprise Miner, we use the following path diagram that includes the HP SVM node.
The only choices for kernels are polynomial (degree 2 or higher), radial, and sigmoid, which are
speci�ed by changing "Optimization Method" to "Active Set" and choosing a kernel under "Active
Set Options".

We run the SAS code given below to compute prediction accuracy for the three models.

data polynomial_kernel;

set './polynomial_kernel.sas7bdat';

match=(pneumonia=lowcase(EM_CLASSIFICATION));

run;

proc sql;

select mean(match) as accuracy

from polynomial_kernel;

run;

data radial_kernel;

set './radial_kernel.sas7bdat';

match=(pneumonia=lowcase(EM_CLASSIFICATION));

run;

proc sql;

select mean(match) as accuracy

from radial_kernel;

run;

179

data sigmoid_kernel;

set './sigmoid_kernel.sas7bdat';

match=(pneumonia=lowcase(EM_CLASSIFICATION));

run;

proc sql;

select mean(match) as accuracy

from sigmoid_kernel;

run;

Models with polynomial (quadratic) and radial kernels have the largest prediction accuracy.

In R:
pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

pneumonia.data$pneumonia<- ifelse(pneumonia.data$pneumonia=="yes",1,0)
pneumonia.data$gender<- ifelse(pneumonia.data$gender=='M',1,0)
pneumonia.data$tobacco_use<- ifelse(pneumonia.data$tobacco_use=='yes',1,0)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(966452)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

180

library(e1071)

#FITTING SVM WITH LINEAR KERNEL
svm.class<- svm(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train, ker-
nel="linear")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.class, test.x))-1

for (i in 1:length(pred.y))
match[i]<- ifelse(test.y[i]==pred.y[i], 1,0)

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.7216"

#FITTING SVM WITH POLYNOMIAL KERNEL
svm.class<- svm(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train, ker-
nel="polynomial")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.class, test.x))-1

for (i in 1:length(pred.y))
match[i]<- ifelse(test.y[i]==pred.y[i], 1,0)

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.7335"

#FITTING SVM WITH RADIAL KERNEL
svm.class<- svm(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train, ker-
nel="radial")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.class, test.x))-1

for (i in 1:length(pred.y))
match[i]<- ifelse(test.y[i]==pred.y[i], 1,0)

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.7425"

181

#FITTING SVM WITH SIGMOID KERNEL
svm.class<- svm(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train, ker-
nel="sigmoid")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.class, test.x))-1

for (i in 1:length(pred.y))
match[i]<- ifelse(test.y[i]==pred.y[i], 1,0)

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.6257"

The model with the radial kernel has the largest accuracy of prediction.

In Python:

182

183

184

Linear Kernel

accuracy= 0.6792

Polynomial Kernel

accuracy= 0.659

Radial Kernel

accuracy= 0.6416

Sigmoid Kernel

accuracy= 0.5491

Comparing the accuracies, we conclude that the model with linear kernel has the best �t. 2

Support Vector Machine for Multinomial Classi�er

One-versus-all is the most practical approach in the case of multinomial classi�cation problems.
Suppose there are c classes. The approach dictates the creation of c indicator variables for the
classes and running c separate support vector machines for binary classi�cation. For each class,

185

output the predicted probability and choose the class with the highest value as the predicted class.

Example. Returning to the data in the �le "movie_data.csv", we use SAS Enterprise Miner, R,
and Python to �t a support vector multinomial classi�er.

In SAS Enterprise Miner:
We �rst create indicator variables for the classes "very bad", "bad", "okay", "good", and "very
good" and save the data into the �le "movie_data_ind.csv", removing the rating variable. Then in
Enterprise Miner, we run the given path with polynomial (quadratic), radial, and sigmoid kernels
for each of the �ve classes separately. We specify each indicator variable as the binary target vari-
able and rename the data set to re�ect what class is being modeled. We run the �ve path diagrams
depicted below.

186

187

Then we collected all the scored data by type of kernel and identi�ed the class with the highest
predicted probability. We then computed and outputted the prediction accuracy for each kernel.
The code and output follow.

proc import out=sasuser.movies

datafile="./movie_data_ind.csv" dbms=csv replace;

run;

data movies;

set sasuser.movies;

dataobs=_N_;

run;

proc sort data=movies;

by _dataobs_;

run;

/*computing prediction accuracy for SVM with quadratic kernel*/

data quadratic_very_bad;

set './quadratic_verybad.sas7bdat';

predprob_very_bad=em_eventprobability;

keep _dataobs_ predprob_very_bad;

run;

proc sort;

by _dataobs_;

188

run;

data quadratic_bad;

set './quadratic_bad.sas7bdat';

predprob_bad=em_eventprobability;

keep _dataobs_ predprob_bad;

run;

proc sort;

by _dataobs_;

run;

data quadratic_okay;

set './quadratic_okay.sas7bdat';

predprob_okay=em_eventprobability;

keep _dataobs_ predprob_okay;

run;

proc sort;

by _dataobs_;

run;

data quadratic_good;

set './quadratic_good.sas7bdat';

predprob_good=em_eventprobability;

keep _dataobs_ predprob_good;

run;

proc sort;

by _dataobs_;

run;

data quadratic_very_good;

set './quadratic_verygood.sas7bdat';

predprob_very_good=em_eventprobability;

keep _dataobs_ predprob_very_good;

run;

proc sort;

by _dataobs_;

run;

189

data quadratic_kernel;

merge movies quadratic_very_bad quadratic_bad

quadratic_okay quadratic_good quadratic_very_good;

by _dataobs_;

if cmiss(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good)=0;

run;

data quadratic_kernel;

set quadratic_kernel;

predprob_max=max(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good);

if (predprob_very_good=predprob_max) then pred_class='very good';

if (predprob_very_bad=predprob_max) then pred_class='very bad';

if (predprob_bad=predprob_max) then pred_class='bad';

if (predprob_okay=predprob_max) then pred_class='okay';

if (predprob_good=predprob_max) then pred_class='good';

keep rating pred_class;

run;

data quadratic_kernel;

set quadratic_kernel;

match=(rating=pred_class);

run;

proc sql;

select mean(match) as accuracy

from quadratic_kernel;

quit;

/**/

/*computing prediction accuracy for SVM with radial kernel*/

data radial_very_bad;

set './radial_verybad.sas7bdat';

predprob_very_bad=em_eventprobability;

190

keep _dataobs_ predprob_very_bad;

run;

proc sort;

by _dataobs_;

run;

data radial_bad;

set './radial_bad.sas7bdat';

predprob_bad=em_eventprobability;

keep _dataobs_ predprob_bad;

run;

proc sort;

by _dataobs_;

run;

data radial_okay;

set './radial_okay.sas7bdat';

predprob_okay=em_eventprobability;

keep _dataobs_ predprob_okay;

run;

proc sort;

by _dataobs_;

run;

data radial_good;

set './radial_good.sas7bdat';

predprob_good=em_eventprobability;

keep _dataobs_ predprob_good;

run;

proc sort;

by _dataobs_;

run;

data radial_very_good;

set './radial_verygood.sas7bdat';

predprob_very_good=em_eventprobability;

keep _dataobs_ predprob_very_good;

run;

191

proc sort;

by _dataobs_;

run;

data radial_kernel;

merge movies radial_very_bad radial_bad

radial_okay radial_good radial_very_good;

by _dataobs_;

if cmiss(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good)=0;

run;

data radial_kernel;

set radial_kernel;

predprob_max=max(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good);

if (predprob_very_good=predprob_max) then pred_class='very good';

if (predprob_very_bad=predprob_max) then pred_class='very bad';

if (predprob_bad=predprob_max) then pred_class='bad';

if (predprob_okay=predprob_max) then pred_class='okay';

if (predprob_good=predprob_max) then pred_class='good';

keep rating pred_class;

run;

data radial_kernel;

set radial_kernel;

match=(rating=pred_class);

run;

proc sql;

select mean(match) as accuracy

from radial_kernel;

quit;

192

/**/

/*computing prediction accuracy for SVM with sigmoid kernel*/

data sigmoid_very_bad;

set './sigmoid_verybad.sas7bdat';

predprob_very_bad=em_eventprobability;

keep _dataobs_ predprob_very_bad;

run;

proc sort;

by _dataobs_;

run;

data sigmoid_bad;

set './sigmoid_bad.sas7bdat';

predprob_bad=em_eventprobability;

keep _dataobs_ predprob_bad;

run;

proc sort;

by _dataobs_;

run;

data sigmoid_okay;

set './sigmoid_okay.sas7bdat';

predprob_okay=em_eventprobability;

*keep _dataobs_ predprob_okay;

run;

proc sort;

by _dataobs_;

run;

data sigmoid_good;

set './sigmoid_good.sas7bdat';

predprob_good=em_eventprobability;

keep _dataobs_ predprob_good;

run;

proc sort;

by _dataobs_;

run;

193

data sigmoid_very_good;

set './sigmoid_verygood.sas7bdat';

predprob_very_good=em_eventprobability;

keep _dataobs_ predprob_very_good;

run;

proc sort;

by _dataobs_;

run;

data sigmoid_kernel;

merge movies sigmoid_very_bad sigmoid_bad

sigmoid_okay sigmoid_good sigmoid_very_good;

by _dataobs_;

if cmiss(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good)=0;

run;

data sigmoid_kernel;

set sigmoid_kernel;

predprob_max=max(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good);

if (predprob_very_good=predprob_max) then pred_class='very good';

if (predprob_very_bad=predprob_max) then pred_class='very bad';

if (predprob_bad=predprob_max) then pred_class='bad';

if (predprob_okay=predprob_max) then pred_class='okay';

if (predprob_good=predprob_max) then pred_class='good';

keep rating pred_class;

run;

data sigmoid_kernel;

set sigmoid_kernel;

match=(rating=pred_class);

run;

proc sql;

select mean(match) as accuracy

from sigmoid_kernel;

quit;

194

We see that the largest accuracy is for the model with the radial kernel.

In R:

movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

movie.data$gender<- ifelse(movie.data$gender=='M',1,0)
movie.data$member<- ifelse(movie.data$member=='yes',1,0)
#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(444625)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

library(e1071)

#FITTING SVM WITH LINEAR KERNEL
svm.multiclass<- svm(as.factor(rating) ∼ age + gender + member + nmovies,
data=train, kernel="linear")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.multiclass, test.x))

print(paste("accuracy=", round(1-mean(test.y!=pred.y),digits=4)))

"accuracy= 0.2892"

#FITTING SVM WITH POLYNOMIAL KERNEL
svm.multiclass<- svm(as.factor(rating) ∼ age + gender + member + nmovies,

195

data=train, kernel="polynomial")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.multiclass, test.x))

print(paste("accuracy=", round(1-mean(test.y!=pred.y),digits=4)))

"accuracy= 0.3133"

#FITTING SVM WITH RADIAL KERNEL
svm.multiclass<- svm(as.factor(rating) ∼ age + gender + member + nmovies,
data=train, kernel="radial")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.multiclass, test.x))

print(paste("accuracy=", round(1-mean(test.y!=pred.y),digits=4)))

"accuracy= 0.3133"

#FITTING SVM WITH SIGMOID KERNEL
svm.multiclass<- svm(as.factor(rating) ∼ age + gender + member + nmovies,
data=train, kernel="sigmoid")

#computing prediction accuracy for testing data
pred.y<- as.numeric(predict(svm.multiclass, test.x))

print(paste("accuracy=", round(1-mean(test.y!=pred.y),digits=4)))

"accuracy= 0.2651"

The models with polynomial and radial kernels have the best �t.

In Python:

196

197

198

Linear Kernel

accuracy= 0.3421

Polynomial Kernel

accuracy= 0.3224

Radial Kernel

accuracy= 0.3553

Sigmoid Kernel

accuracy= 0.3289

The model with radial kernel has the best �t. 2.

NAIVE BAYES CLASSIFICATION

Naive Bayes Classi�cation is a method used for binary or multinomial classi�cation (but not
a regression) that utilizes the Bayes' formula. Suppose there are k predictors X = (X1, . . . , Xk)

199

which are binary, categorical, or continuous. And let Y denote the response variable. By the Bayes'
formula

P(Y |X) =
P(X|Y)P(Y)

P(X)
.

The Naive Bayes classi�cation method assumes that the predictors are conditionally independent,
given Y , that is,

P(Y |X) =
P(Y)

∏k
i=1 P(Xi|Y)

P(X)
.

This conditional independence assumption is rather naive, hence the name of the technique.

In classi�cation problem (binary or multinomial), we compute the conditional (posterior) probabil-
ity P(Y |X) of each class, and classify the record into the class with the highest probability. Since
we compare the posterior probabilities and the denominator P(X) is present in each expression, it

can be ignored. That is, P(Y |X) is proportional to P(Y)
k∏
i=1

P(Xi|Y) up to a multiplicative constant.

To estimate the prior probability P(Y = y) of each class y, we compute the proportion of ob-
servations in each class in the training set. To compute the empirical conditional probabilities
P(Xi = x|Y = y) for categorical predictors, we calculate the fraction of observations in the class
Y = y in the training set for which Xi = x. If a predictor is continuous, we assume that the
underlying distribution is normal (Gaussian) with estimated mean µ̂ = x̄ and estimated variance
σ̂2 = s2.

Characteristics of Naive Bayes Classi�ers

1. Robust to outliers because they average out when computing posterior probabilities.
2. Handles missing values by ignoring the missing data points in calculations.
3. Robust to irrelevant predictors since P(Xi|Y) is almost uniformly distributed and factors out in
comparisons of posterior probabilities.
4. Correlated predictors can degrade the performance of the technique. The conditional indepen-
dence assumption is the key.

Example. Suppose the training data are as given in the table below.

200

ID
Home Marital Annual Defaulted
Owner Status Income ($K) Borrower

1 yes single 125 no
2 no married 100 no
3 no single 70 no
4 yes married 120 no
5 no divorced 95 yes
6 no married 60 no
7 yes divorced 220 no
8 no single 85 yes
9 no married 75 no
10 no single 90 yes

The prior probabilities are P(default = no) = 7/10 = 0.7, P(defaul = yes) = 3/10 = 0.3. The
conditional probabilities are:

P(homeowner = yes | default = no) = 3/7,

P(homeowner = yes | default = yes) = 0,

P(homeowner = no | default = no) = 4/7,

P(homeowner = no | default = yes) = 1,

P(maritalstatus = single | default = no) = 2/7,

P(maritalstatus = single |, default = yes) = 2/3,

P(maritalstatus = married | default = no) = 4/7,

P(maritalstatus = married | default = yes) = 0,

P(maritalstatus = divorced | default = no) = 1/7,

P(maritalstatus = divorced | default = yes) = 1/3.

The posterior density for annual income is normal with the estimated parameters for default=no,
µ̂ =sample mean= (125 + 100 + 70 + 120 + 60 + 220 + 75)/7 = 110, σ̂2 = s2 = 2975, and for
default=yes, µ̂ = (95 + 85 + 90)/3 = 90, and σ̂2 = s2 = 25.

Suppose we would like to predict the default status for a person who is not a home owner, who is
single, and whose annual income is $120K. We write

P(X | default = no) = P(homeowner = no | default = no)×P(maritalstatus = single | default = no)×

P(annualincome = $120K | defaul = no) = (4/7)(2/7)
1√

(2π)(2975)
e−

(120−110)2

(2)(2975) = 0.001215,

201

and

P(X | default = yes) = P(homeowner = no | default = no)×P(maritalstatus = single | default = no)×

P(annualincome = $120K | defaul = no) = (1)(2/3)
1√

(2π)(25)
e−

(120−90)2

(2)(25) = (8.1)(10)−10.

Hence,

P(default = no |X) = P(default = no)P(X | default = no)/P(X)

= (0.7)(0.001215)/P(X) = 0.000851/P(X),

and

P(default = yes |X) = P(default = yes)P(X | default = yes)/P(X)

= (0.3)(8.1)(10)−10/P(X) = (2.43)(10)−10/P(X).

We can see that P(default = no |X) > P(default = yes |X) and so we predict default=no for this
person. 2

Example. We use the naive Bayes binary classi�er for the data "pneumonia_data.csv".

In SAS:

proc import out=pneumonia datafile="./pneumonia_data.csv" dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

proc surveyselect data=pneumonia rate=0.8 seed=999454

out=pneumonia outall method=srs;

run;

data train (drop=selected);

set pneumonia;

if selected=1;

run;

data test (drop=selected);

set pneumonia;

if selected=0;

run;

202

/*COMPUTING PRIOR PROBABILITIES*/

proc freq data=train noprint;

table pneumonia/out=priors;

run;

data priors;

set priors;

percent=percent/100;

if pneumonia='no' then call symput('prior_no', percent);

if pneumonia='yes' then call symput('prior_yes', percent);

run;

/*COMPUTING POSTERIOR PROBABILITIES FOR CATEGORICAL PREDICTORS*/

proc freq data=train noprint;

table pneumonia*gender/out=gender_perc nocum list;

run;

data gender_perc;

set gender_perc;

percent=percent/100;

if pneumonia='no' and gender='F' then call symput('female_no', percent);

if pneumonia='no' and gender='M' then call symput('male_no', percent);

if pneumonia='yes' and gender='F' then call symput('female_yes', percent);

if pneumonia='yes' and gender='M' then call symput('male_yes', percent);

run;

proc freq data=train noprint;

table pneumonia*tobacco_use/out=tobacco_use_perc nocum list;

run;

data tobacco_use_perc;

set tobacco_use_perc;

percent=percent/100;

if pneumonia='no' and tobacco_use='no' then call symput('tobacco_no_no', percent);

if pneumonia='no' and tobacco_use='yes' then call symput('tobacco_yes_no', percent);

if pneumonia='yes' and tobacco_use='no' then call symput('tobacco_no_yes', percent);

if pneumonia='yes' and tobacco_use='yes' then call symput('tobacco_yes_yes', percent);

run;

/*COMPUTING MEAN AND STANDARD DEVIATION FOR NUMERICAL PREDICTORS*/

proc means data=train mean std noprint;

class pneumonia;

203

var age PM2_5;

output out=stats;

run;

data stats;

set stats;

if pneumonia='no' and _stat_='MEAN' then

do;

call symput('age_mean_no',age);

call symput('PM2_5_mean_no',PM2_5);

end;

if pneumonia='no' and _stat_='STD' then

do;

call symput('age_std_no',age);

call symput('PM2_5_std_no',PM2_5);

end;

if pneumonia='yes' and _stat_='MEAN' then

do;

call symput('age_mean_yes',age);

call symput('PM2_5_mean_yes',PM2_5);

end;

if pneumonia='yes' and _stat_='STD' then

do;

call symput('age_std_yes',age);

call symput('PM2_5_std_yes',PM2_5);

end;

run;

/*COMPUTING POSTERIOR PROBABILITIES FOR TESTING DATA*/

data test;

set test;

if (gender='F' and tobacco_use='no') then

do;

pred_prob_no=&prior_no*&female_no*&tobacco_no_no*1/(2*3.14)*1/(&age_std_no*&PM2_5_std_no)

*exp(-(age-&age_mean_no)**2/(2*&age_std_no**2)-(PM2_5-&PM2_5_mean_no)**2/(2*&PM2_5_std_no**2));

pred_prob_yes=&prior_yes*&female_yes*&tobacco_no_yes*1/(2*3.14)*1/(&age_std_yes*&PM2_5_std_yes)

*exp(-(age-&age_mean_yes)**2/(2*&age_std_yes**2)-(PM2_5-&PM2_5_mean_yes)**2/

(2*&PM2_5_std_yes**2));

end;

if (gender='M' and tobacco_use='no') then

do;

pred_prob_no=&prior_no*&male_no*&tobacco_no_no*1/(2*3.14)*1/(&age_std_no*&PM2_5_std_no)

204

*exp(-(age-&age_mean_no)**2/(2*&age_std_no**2)-(PM2_5-&PM2_5_mean_no)**2/(2*&PM2_5_std_no**2));

pred_prob_yes=&prior_yes*&male_yes*&tobacco_no_yes*1/(2*3.14)*1/(&age_std_yes*&PM2_5_std_yes)

*exp(-(age-&age_mean_yes)**2/(2*&age_std_yes**2)-(PM2_5-&PM2_5_mean_yes)**2/

(2*&PM2_5_std_yes**2));

end;

if (gender='F' and tobacco_use='yes') then

do;

pred_prob_no=&prior_no*&female_no*&tobacco_yes_no*1/(2*3.14)*1/(&age_std_no*&PM2_5_std_no)

*exp(-(age-&age_mean_no)**2/(2*&age_std_no**2)-(PM2_5-&PM2_5_mean_no)**2/(2*&PM2_5_std_no**2));

pred_prob_yes=&prior_yes*&female_yes*&tobacco_yes_yes*1/(2*3.14)*1/(&age_std_yes*&PM2_5_std_yes)

*exp(-(age-&age_mean_yes)**2/(2*&age_std_yes**2)-(PM2_5-&PM2_5_mean_yes)**2/

(2*&PM2_5_std_yes**2));

end;

if (gender='M' and tobacco_use='yes') then

do;

pred_prob_no=&prior_no*&male_no*&tobacco_yes_no*1/(2*3.14)*1/(&age_std_no*&PM2_5_std_no)

*exp(-(age-&age_mean_no)**2/(2*&age_std_no**2)-(PM2_5-&PM2_5_mean_no)**2/(2*&PM2_5_std_no**2));

pred_prob_yes=&prior_yes*&male_yes*&tobacco_yes_yes*1/(2*3.14)*1/(&age_std_yes*&PM2_5_std_yes)

*exp(-(age-&age_mean_yes)**2/(2*&age_std_yes**2)-(PM2_5-&PM2_5_mean_yes)**2/

(2*&PM2_5_std_yes**2));

end;

run;

/*COMPUTING PREDICTION ACCURACY*/

data test;

set test;

if pred_prob_no < pred_prob_yes then pred_class='yes';

else pred_class='no';

if pneumonia=pred_class then pred=1; else pred=0;

run;

proc sql;

select mean(pred) as accuracy

from test;

quit;

205

In R: All the values for predictors have to be numeric, so we need to replace all string values with
numeric values before running the technique.

pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

pneumonia.data$pneumonia<- ifelse(pneumonia.data$pneumonia=="yes",1,0)
pneumonia.data$gender<- ifelse(pneumonia.data$gender=='M',1,0)
pneumonia.data$tobacco_use<- ifelse(pneumonia.data$tobacco_use=='yes',1,0)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(1012312)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

#FITTING NAIVE BAYES BINARY CLASSIFIER
library(e1071)
nb.class<- naiveBayes(as.factor(pneumonia)∼ gender + age + tobacco_use + PM2_5, data=train)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- as.numeric(predict(nb.class, test.x))-1

match<- c()
for (i in 1:length(pred.y))

match[i]<- ifelse(test.y[i]==pred.y[i], 1, 0)
print(paste('accuracy=', round(mean(match)*100, digits=2),'%'))

"accuracy= 74.28 %"

In Python:

206

2

Example. For the data "movie_data.csv" we �t a naive Bayes multinomial classi�er.

In SAS:

proc import out=movie datafile="./movie_data.csv" dbms=csv replace;

/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/

207

proc surveyselect data=movie rate=0.8 seed=121800

out=movie outall method=srs;

run;

data train (drop=selected);

set movie;

if selected=1;

run;

data test (drop=selected);

set movie;

if selected=0;

run;

/*COMPUTING PRIOR PROBABILITIES*/

proc freq data=train noprint;

table rating/out=priors;

run;

data priors;

set priors;

percent=percent/100;

if rating='very bad' then call symput('prior_very_bad', percent);

if rating='bad' then call symput('prior_bad', percent);

if rating='okay' then call symput('prior_okay', percent);

if rating='good' then call symput('prior_good', percent);

if rating='very good' then call symput('prior_very_good', percent);

run;

/*COMPUTING POSTERIOR PROBABILITIES FOR CATEGORICAL PREDICTORS*/

proc freq data=train noprint;

table rating*gender/out=gender_perc

nocum list;

run;

data gender_perc;

set gender_perc;

percent=percent/100;

if rating='very bad' and gender='F' then call symput('female_very_bad', percent);

if rating='very bad' and gender='M' then call symput('male_very_bad', percent);

if rating='bad' and gender='F' then call symput('female_bad', percent);

if rating='bad' and gender='M' then call symput('male_bad', percent);

208

if rating='okay' and gender='F' then call symput('female_okay', percent);

if rating='okay' and gender='M' then call symput('male_okay', percent);

if rating='good' and gender='F' then call symput('female_good', percent);

if rating='good' and gender='M' then call symput('male_good', percent);

if rating='very good' and gender='F' then call symput('female_very_good', percent);

if rating='very good' and gender='M' then call symput('male_very_good', percent);

run;

proc freq data=train noprint;

table rating*member/out=member_perc nocum list;

run;

data member_perc;

set member_perc;

percent=percent/100;

if rating='very bad' and member='no' then call symput('member_no_very_bad', percent);

if rating='very bad' and member='yes' then call symput('member_yes_very_bad', percent);

if rating='bad' and member='no' then call symput('member_no_bad', percent);

if rating='bad' and member='yes' then call symput('member_yes_bad', percent);

if rating='okay' and member='no' then call symput('member_no_okay', percent);

if rating='okay' and member='yes' then call symput('member_yes_okay', percent);

if rating='good' and member='no' then call symput('member_no_good', percent);

if rating='good' and member='yes' then call symput('member_yes_good', percent);

if rating='very good' and member='no' then call symput('member_no_very_good', percent);

if rating='very good' and member='yes' then call symput('member_yes_very_good', percent);

run;

/*COMPUTING MEAN AND STANDARD DEVIATION FOR NUMERICAL PREDICTORS*/

proc means data=train mean std noprint;

class rating;

var age nmovies;

output out=stats;

run;

data stats;

set stats;

if rating='very bad' and _stat_='MEAN' then

do;

call symput('age_mean_very_bad',age);

call symput('nmovies_mean_very_bad',nmovies);

end;

if rating='very bad' and _stat_='STD' then

209

do;

call symput('age_std_very_bad',age);

call symput('nmovies_std_very_bad',nmovies);

end;

if rating='bad' and _stat_='MEAN' then

do;

call symput('age_mean_bad',age);

call symput('nmovies_mean_bad',nmovies);

end;

if rating='bad' and _stat_='STD' then

do;

call symput('age_std_bad',age);

call symput('nmovies_std_bad',nmovies);

end;

if rating='okay' and _stat_='MEAN' then

do;

call symput('age_mean_okay',age);

call symput('nmovies_mean_okay',nmovies);

end;

if rating='okay' and _stat_='STD' then

do;

call symput('age_std_okay',age);

call symput('nmovies_std_okay',nmovies);

end;

if rating='good' and _stat_='MEAN' then

do;

call symput('age_mean_good',age);

call symput('nmovies_mean_good',nmovies);

end;

if rating='good' and _stat_='STD' then

do;

call symput('age_std_good',age);

call symput('nmovies_std_good',nmovies);

end;

if rating='very good' and _stat_='MEAN' then

do;

call symput('age_mean_very_good',age);

call symput('nmovies_mean_very_good',nmovies);

end;

if rating='very good' and _stat_='STD' then

do;

call symput('age_std_very_good',age);

210

call symput('nmovies_std_very_good',nmovies);

end;

run;

/*COMPUTING POSTERIOR PROBABILITIES FOR TESTING DATA*/

data test;

set test;

if (gender='F' and member='no') then

do;

pred_prob_very_bad=&prior_very_bad*&female_very_bad*&member_no_very_bad*1/(2*3.14)*1/(&age_std_very_bad*

&nmovies_std_very_bad)*exp(-(age-&age_mean_very_bad)**2/(2*&age_std_very_bad**2)

-(nmovies-&nmovies_mean_very_bad)**2/(2*&nmovies_std_very_bad**2));

pred_prob_bad=&prior_bad*&female_bad*&member_no_bad*1/(2*3.14)*1/(&age_std_bad*&nmovies_std_bad)

*exp(-(age-&age_mean_bad)**2/(2*&age_std_bad**2)-(nmovies-&nmovies_mean_bad)**2/(2*&nmovies_std_bad**2));

pred_prob_okay=&prior_okay*&female_okay*&member_no_okay*1/(2*3.14)*1/(&age_std_okay*&nmovies_std_okay)

*exp(-(age-&age_mean_okay)**2/(2*&age_std_okay**2)-(nmovies-&nmovies_mean_okay)**2/(2*&nmovies_std_okay**2));

pred_prob_good=&prior_good*&female_good*&member_no_good*1/(2*3.14)*1/(&age_std_good*&nmovies_std_good)

*exp(-(age-&age_mean_good)**2/(2*&age_std_good**2)-(nmovies-&nmovies_mean_good)**2/(2*&nmovies_std_good**2));

pred_prob_very_good=&prior_very_good*&female_very_good*&member_no_very_good*1/(2*3.14)*1/(&age_std_very_good

*&nmovies_std_very_good)*exp(-(age-&age_mean_very_good)**2/(2*&age_std_very_good**2)

-(nmovies-&nmovies_mean_very_good)**2/(2*&nmovies_std_very_good**2));

end;

if (gender='M' and member='no') then

do;

pred_prob_very_bad=&prior_very_bad*&male_very_bad*&member_no_very_bad*1/(2*3.14)*1/(&age_std_very_bad

*&nmovies_std_very_bad)*exp(-(age-&age_mean_very_bad)**2/(2*&age_std_very_bad**2)-(nmovies-&nmovies_mean_very_bad)

2/(2*&nmovies_std_very_bad2));

pred_prob_bad=&prior_bad*&male_bad*&member_no_bad*1/(2*3.14)*1/(&age_std_bad*&nmovies_std_bad)

*exp(-(age-&age_mean_bad)**2/(2*&age_std_bad**2)-(nmovies-&nmovies_mean_bad)**2/(2*&nmovies_std_bad**2));

pred_prob_okay=&prior_okay*&male_okay*&member_no_okay*1/(2*3.14)*1/(&age_std_okay*&nmovies_std_okay)

*exp(-(age-&age_mean_okay)**2/(2*&age_std_okay**2)-(nmovies-&nmovies_mean_okay)**2/(2*&nmovies_std_okay**2));

pred_prob_good=&prior_good*&male_good*&member_no_good*1/(2*3.14)*1/(&age_std_good*&nmovies_std_good)

*exp(-(age-&age_mean_good)**2/(2*&age_std_good**2)-(nmovies-&nmovies_mean_good)**2/(2*&nmovies_std_good**2));

pred_prob_very_good=&prior_very_good*&male_very_good*&member_no_very_good*1/(2*3.14)*1/(&age_std_very_good

*&nmovies_std_very_good)*exp(-(age-&age_mean_very_good)**2/(2*&age_std_very_good**2)-(nmovies

-&nmovies_mean_very_good)**2/(2*&nmovies_std_very_good**2));

end;

if (gender='F' and member='yes') then

do;

pred_prob_very_bad=&prior_very_bad*&female_very_bad*&member_yes_very_bad*1/(2*3.14)*1/(&age_std_very_bad

211

*&nmovies_std_very_bad)*exp(-(age-&age_mean_very_bad)**2/(2*&age_std_very_bad**2)-(nmovies-&nmovies_mean_very_bad)

2/(2*&nmovies_std_very_bad2));

pred_prob_bad=&prior_bad*&female_bad*&member_yes_bad*1/(2*3.14)*1/(&age_std_bad*&nmovies_std_bad)

*exp(-(age-&age_mean_bad)**2/(2*&age_std_bad**2)-(nmovies-&nmovies_mean_bad)**2/(2*&nmovies_std_bad**2));

pred_prob_okay=&prior_okay*&female_okay*&member_yes_okay*1/(2*3.14)*1/(&age_std_okay*&nmovies_std_okay)

*exp(-(age-&age_mean_okay)**2/(2*&age_std_okay**2)-(nmovies-&nmovies_mean_okay)**2/(2*&nmovies_std_okay**2));

pred_prob_good=&prior_good*&female_good*&member_yes_good*1/(2*3.14)*1/(&age_std_good*&nmovies_std_good)

*exp(-(age-&age_mean_good)**2/(2*&age_std_good**2)-(nmovies-&nmovies_mean_good)**2/(2*&nmovies_std_good**2));

pred_prob_very_good=&prior_very_good*&female_very_good*&member_yes_very_good*1/(2*3.14)*1/(&age_std_very_good

*&nmovies_std_very_good)*exp(-(age-&age_mean_very_good)**2/(2*&age_std_very_good**2)-(nmovies

-&nmovies_mean_very_good)**2/(2*&nmovies_std_very_good**2));

end;

if (gender='M' and member='yes') then

do;

pred_prob_very_bad=&prior_very_bad*&male_very_bad*&member_yes_very_bad*1/(2*3.14)*1/(&age_std_very_bad

*&nmovies_std_very_bad)*exp(-(age-&age_mean_very_bad)**2/(2*&age_std_very_bad**2)-(nmovies

-&nmovies_mean_very_bad)**2/(2*&nmovies_std_very_bad**2));

pred_prob_bad=&prior_bad*&male_bad*&member_yes_bad*1/(2*3.14)*1/(&age_std_bad*&nmovies_std_bad)

*exp(-(age-&age_mean_bad)**2/(2*&age_std_bad**2)-(nmovies-&nmovies_mean_bad)**2/(2*&nmovies_std_bad**2));

pred_prob_okay=&prior_okay*&male_okay*&member_yes_okay*1/(2*3.14)*1/(&age_std_okay*&nmovies_std_okay)

*exp(-(age-&age_mean_okay)**2/(2*&age_std_okay**2)-(nmovies-&nmovies_mean_okay)**2/(2*&nmovies_std_okay**2));

pred_prob_good=&prior_good*&male_good*&member_yes_good*1/(2*3.14)*1/(&age_std_good*&nmovies_std_good)

*exp(-(age-&age_mean_good)**2/(2*&age_std_good**2)-(nmovies-&nmovies_mean_good)**2/(2*&nmovies_std_good**2));

pred_prob_very_good=&prior_very_good*&male_very_good*&member_yes_very_good*1/(2*3.14)*1/(&age_std_very_good

*&nmovies_std_very_good)*exp(-(age-&age_mean_very_good)**2/(2*&age_std_very_good**2)-(nmovies

-&nmovies_mean_very_good)**2/(2*&nmovies_std_very_good**2));

end;

run;

/*COMPUTING PREDICTION ACCURACY*/

data test;

set test;

max_prob=max(pred_prob_very_bad, pred_prob_bad,

pred_prob_okay, pred_prob_good, pred_prob_very_good);

if max_prob=pred_prob_very_good then pred_class='very good';

if max_prob=pred_prob_very_bad then pred_class='very bad';

if max_prob=pred_prob_bad then pred_class='bad';

if max_prob=pred_prob_okay then pred_class='okay';

if max_prob=pred_prob_good then pred_class='good';

if pred_class=rating then pred=1; else pred=0;

run;

212

proc sql;

select mean(pred) as accuracy

from test;

quit;

In R:

movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

movie.data$gender<- ifelse(movie.data$gender=='M',1,0)
movie.data$member<- ifelse(movie.data$member=='yes',1,0)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(444625)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

#FITTING NAIVE BAYES BINARY CLASSIFIER
library(e1071)
nb.multiclass<- naiveBayes(as.factor(rating) ∼ age + gender + member + nmovies, data=train)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- as.numeric(predict(nb.multiclass, test.x))

print(paste('accuracy=', round((1-mean(test.y!=pred.y))*100, digits=2), '%'))

"accuracy= 32.53 %"

213

In Python:

2

214

ARTIFICIAL NEURAL NETWORK

An arti�cial neural network (ANN) is a sub�eld of Arti�cial Intelligence where it attempts
to mimic the network of neurons that makes up a human brain so that computers will have the
option to understand things and make decisions in a human-like manner. The ANN is designed by
programming computers to behave simply like interconnected brain cells.

An ANN consists of an input layer, hidden layers of nodes (or neurons, or perceptrons), and
an output layer. The �rst layer receives raw input, it is processed by multiple hidden layers, and
the last layer produces the result.

Historical Note: The oldest type of neural network, known as Perceptron, was introduced by
Frank Rosenblatt in 1958.

A typical ANN looks something like this:

215

A typical diagram of a biological neural network in the brain looks like this:

Dendrites from biological neural networks represent inputs in ANN, cell nucleus represents nodes,
synapse represents weights, and axon represents output.

Glossary
• Dendrite is a short-branched extension of a nerve cell, along which impulses received from other
cells at synapses are transmitted to the cell body.
• Synapse is a junction between two nerve cells, consisting of a minute gap across which impulses
pass by di�usion of a neurotransmitter.
• Axon is a long threadlike part of a nerve cell along which impulses are conducted from the cell
body to other cells.

To understand the concept of the architecture of an ANN, we have to understand what a neural
network consists of. In order to de�ne a neural network that consists of a large number of arti�cial
neurons, which are nodes arranged in a sequence of layers. Let us look at three types of layers
available in an ANN: input layer, hidden layer, and output layer.

216

Input Layer accepts inputs provided by a programmer. The input features (or the predictor
variables) can be categorical or numeric.

Hidden Layer performs all the calculations to �nd hidden features and patterns.

Output Layer consists of the output variable (or response variable). For regression ANNs, the
output variable is numeric; for binary ANN, the output variable is binary, and for multinomial
ANN, the output variable assumes multi-class values.

In an ANN, the input goes through a series of transformations using the hidden layer, which �nally
results in the output expressed as a linear combination of weighted input features with a bias term
included.

It determines the weighted total that is passed as an input to an activation function to produce
the output. Activation functions choose whether a node should �re or not. Only those who are
�red make it to the output layer. This process is called feed forward (or forward propagation).
After producing the output, an error (or loss) is calculated and a correction is sent back to the
network. This process is known as back propagation (or backward propagation).

217

Historical Note. ANN with back propagation was introduced in Rumelhart, D. E., Hinton, G.
E., and Williams, R. J. (1986). "Learning representations by back-propagating errors". Nature,
323(6088), 533�536. Most of the ANN applications in the literature utilize multi-layer feed-forward
with a back propagation learning algorithm.

An epoch is a complete cycle through the full training set when building an ANN. An iteration is
the number of steps through partitioned packets of the training data, needed to complete one epoch.

Learning Algorithm

An ANN starts with a set of initial weights and then gradually modi�es the weights during the
training cycle to settle down to a set of weights capable of realizing the input-output mapping with
a minimum error.

Denote by xi = (xi1, . . . , xik)
′, i = 1, . . . , n, the set of vectors of input variables (predictor vari-

ables), and let y = (y1, . . . , yn) be the output vector. Also, suppose there is one hidden layer
with m neurons h1, . . . , hm. The response of the hidden layer for the ith individual is the vector
hi = (hi1, . . . , him)′. An ANN produces outputs governed by the relations:

hi = f
(
Wh xi + bi

)
, and ŷi = f(W∗

i hi + b∗i),

where f is the activation function,

218

Wh =

w11 . . . w1k

.
wm1 . . . wmk

is the hidden layer weight matrix, W∗

i = (w∗i1, . . . , w
∗
im) is the vector of output weights for individual

i, bi = (bi1, . . . , bim)′ is the hidden layer bias vector for individual i, and b∗i is the output layer bias
for individual i.

The activation functions that are used in SAS, R, and Python are (de�ned for x ∈ R) logis-

tic (or sigmoid) f(x) =
exp(x)

1 + exp(x)
, and hyperbolic tangent (or tanh) f(x) = tanh(x) =

exp(x)− exp(−x)

exp(x) + exp(−x)
.

The loss functions used to compute errors in the back propagation algorithm are: mean squared
error for regression and cross-entropy for classi�cation.

The method of steepest descent is used to update the weights. For example, for the mean squared

error loss function, the loss function is L =
1

2

n∑
i=1

(
yi − f(W∗

i hi + b∗i)
)2
. The weights are updated

according to the recursive relation w∗ij(new) = w∗ij(old)− λ ∂L

∂w∗ij
, j = 1, . . . ,m,, where λ is referred

to as learning rate. The same algorithm applies to the weights in the hidden layers Wh.

Example. We �t an ANN to the housing data.

In SAS:

We run the following path diagram in Enterprise Miner, choosing logistic as the activation function.

Then we run the following code to compute the accuracy.

219

data accuracy;

set tmp1.em_save_test;

ind10=(abs(R_median_house_value)<0.10*median_house_value);

ind15=(abs(R_median_house_value)<0.15*median_house_value);

ind20=(abs(R_median_house_value)<0.20*median_house_value);

obs_n=_N_;

run;

proc sql;

select mean(ind10) as accuracy10,

mean(ind15) as accuracy15, mean(ind20) as

accuracy20

from accuracy;

quit;

/*PLOTTING ACTUAL AND PREDICTED VALUES FOR TESTING DATA*/;

goptions reset=all border;

title1 "Artificial Neural Network Regression with Logistic Activation Function";

symbol1 interpol=join value=dot color=orange;

symbol2 interpol=join value=dot color=navy;

legend1 value=("actual" "predicted")

position=(top right inside) label=none;

proc gplot data=accuracy;

plot median_house_value*obs_n

EM_PREDICTION*obs_n/ overlay legend=legend1;

run;

220

Next, we run the same diagram, changing the activation function to the default function tanh. The
accuracy and plot are given below.

221

The �tted ANN model with the tanh activation function has a higher accuracy than that with the
logistic activation function.

In R:

housing.data<- read.csv(�le="./housing_data.csv", header=TRUE, sep=",")

housing.data$ocean_proximity<- ifelse(housing.data$ocean_proximity=='<1H OCEAN', 1,
ifelse(housing.data$ocean_proximity=='INLAND',2, ifelse(housing.data$ocean_proximity=='NEAR
BAY',3,4)))

#SCALING VARIABLES TO FALL IN [0,1]
library(dplyr)

222

scale01 <- function(x){
(x-min(x))/(max(x)-min(x))

}

housing.data<- housing.data %>% mutate_all(scale01)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(346634)
sample <- sample(c(TRUE, FALSE), nrow(housing.data), replace=TRUE, prob=c(0.8,0.2))
train<- housing.data[sample,]
test<- housing.data[!sample,]
test.x<- data.matrix(test[-8])
test.y<- data.matrix(test[8])

#FITTING ANN WITH LOGISTIC ACTIVATION FUNCTION
#install.packages("neuralnet")
library(neuralnet)
ann.reg<- neuralnet(median_house_value∼ housing_median_age+total_rooms+total_bedrooms
+population+households+median_income +ocean_proximity, data=train, hidden=3, act.fct="logistic")

#PLOTTING THE DIAGRAM
plot(ann.reg)

223

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(ann.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Prediction Accuracy')
print(paste('within 10%:', round(mean(accuracy10),4)))

224

"within 10%: 0.2702"

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.3809"

print(paste('within 20%:', round(mean(accuracy20),4)))

"within 20%: 0.4709"

#PLOTTING ACTUAL AND PREDICTED VALUES FOR TESTING DATA
x<- 1:length(test.y)
plot(x, test.y, type="l", lwd=2, col="magenta", main="ANN Regression with Logistic Activation
Function", panel.�rst=grid())
lines(x, pred.y, lwd=2, col="dodgerblue")
points(x,test.y, pch=16, col="magenta")
points(x, pred.y, pch=16, col="dodgerblue")
legend("topright", c("actual", "predicted"), lty=1, lwd=2, col=c("magenta","dodgerblue"))

225

#FITTING ANNWITH TANHACTIVATION FUNCTION ann.reg<- neuralnet(median_house_value
∼ housing_median_age+total_rooms+total_bedrooms+population
+households+median_income +ocean_proximity, data=train, hidden=2, act.fct="tanh")

#PLOTTING THE DIAGRAM
plot(ann.reg)

226

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.y<- predict(ann.reg, test.x)

#accuracy within 10%
accuracy10<- ifelse(abs(test.y-pred.y)<0.10*test.y,1,0)

#accuracy within 15%
accuracy15<- ifelse(abs(test.y-pred.y)<0.15*test.y,1,0)

#accuracy within 20%
accuracy20<- ifelse(abs(test.y-pred.y)<0.20*test.y,1,0)

print('Prediction Accuracy')
print(paste('within 10%:', round(mean(accuracy10),4)))

227

"within 10%: 0.2383 "

print(paste('within 15%:', round(mean(accuracy15),4)))

"within 15%: 0.3265"

print(paste('within 20%:', round(mean(accuracy20),4)))

"within 20%: 0.454"

#PLOTTING ACTUAL AND PREDICTED VALUES FOR TESTING DATA
x<- 1:length(test.y)
plot(x, test.y, type="l", lwd=2, col="orange", main="ANN Regression with Tanh Activation Func-
tion", panel.�rst=grid())
lines(x, pred.y, lwd=2, col="purple")
points(x,test.y, pch=16, col="orange")
points(x, pred.y, pch=16, col="purple")
legend("topright", c("actual", "predicted"), lty=1, lwd=2, col=c("orange","purple"))

228

In Python: We will an ANN with tanh and sigmoid (logistic) activation functions.

229

230

231

232

233

2

Example. For the pneumonia data, we �t an ANN.

In SAS:

In Enterprise Miner we run the following diagram:

234

Note that the scale for the target variable must be speci�ed as "nominal". Then we run the follow-
ing code to compute the accuracy for the model with the logistic activation function:

data accuracy;

set tmp1.em_save_test;

match=(em_classification=em_classtarget);

run;

proc sql;

select mean(match) as accuracy

from accuracy;

quit;

and that for the model with the tanh activation function:

Note that the model with the tanh activation function has a higher prediction accuracy.

In R:
pneumonia.data<- read.csv(�le="./pneumonia_data.csv", header=TRUE, sep=",")

235

pneumonia.data$pneumonia<- ifelse(pneumonia.data$pneumonia=="yes",1,0)
pneumonia.data$gender<- ifelse(pneumonia.data$gender=='M',1,0)
pneumonia.data$tobacco_use<- ifelse(pneumonia.data$tobacco_use=='yes',1,0)

#SCALING VARIABLES TO FALL IN [0,1]
library(dplyr)

scale01 <- function(x){
(x-min(x))/(max(x)-min(x))

}

pneumonia.data<- pneumonia.data %>% mutate_all(scale01)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(503548)
sample <- sample(c(TRUE, FALSE), nrow(pneumonia.data), replace=TRUE, prob=c(0.8,0.2))
train<- pneumonia.data[sample,]
test<- pneumonia.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

library(neuralnet)

#FITTING ANNWITH LOGISTIC ACTIVATION FUNCTION ANDONE LAYERWITH THREE
NEURONS
ann.class<- neuralnet(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train,
hidden=3, act.fct="logistic")

#PLOTTING THE DIAGRAM
plot(ann.class)

236

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob<- predict(ann.class, test.x)[,1]

match<- c()
pred.y<- c()
for (i in 1:length(test.y)){

pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
match[i]<- ifelse(test.y[i]==pred.y[i],1,0)

}

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.2747"

#FITTING ANN WITH LOGISTIC ACTIVATION FUNCTION AND C(2,3) LAYERS
ann.class<- neuralnet(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train,

237

hidden=c(2,3), act.fct="logistic")

#PLOTTING THE DIAGRAM
plot(ann.class)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob<- predict(ann.class, test.x)[,1]

match<- c()
pred.y<- c()
for (i in 1:length(test.y)){

pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
match[i]<- ifelse(test.y[i]==pred.y[i],1,0)

}

238

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.2623"

#FITTING ANN WITH TANH ACTIVATION FUNCTION
ann.class<- neuralnet(as.factor(pneumonia) ∼ gender + age + tobacco_use + PM2_5, data=train,
hidden=2, act.fct="tanh")

#PLOTTING THE DIAGRAM
plot(ann.class)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob<- predict(ann.class, test.x)[,1]

match<- c()
pred.y<- c()
for (i in 1:length(test.y)){

239

pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
match[i]<- ifelse(test.y[i]==pred.y[i],1,0)

}

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.3025"

In Python:

240

Accuracy: 67.92 %

2

Example. We �t an ANN to the movies data.

In SAS:

In Enterprise Miner we run the following diagram, with the logistic activation function for the
model. We set the indicator variables to "Target" with "Nominal" scale, and to "Rejected" all the
other indicators.

241

Then we run the following code to compute the accuracy.

data rating;

set sasuser.movies;

dataobs=_n_;

keep _dataobs_ rating;

run;

proc sort;

by _dataobs_;

run;

data very_bad;

set './em_save_test_verybad.sas7bdat';

predprob_verybad=em_eventprobability;

class_verybad=em_classtarget;

keep _dataobs_ class_verybad predprob_verybad;

run;

proc sort;

242

by _dataobs_;

run;

data bad;

set './em_save_test_bad.sas7bdat';

predprob_bad=em_eventprobability;

class_bad=em_classtarget;

keep _dataobs_ class_bad predprob_bad;

run;

proc sort;

by _dataobs_;

run;

data okay;

set './em_save_test_okay.sas7bdat';

predprob_okay=em_eventprobability;

class_okay=em_classtarget;

keep _dataobs_ class_okay predprob_okay;

run;

proc sort;

by _dataobs_;

run;

data good;

set './em_save_test_good.sas7bdat';

predprob_good=em_eventprobability;

class_good=em_classtarget;

keep _dataobs_ class_good predprob_good;

run;

proc sort;

by _dataobs_;

run;

data very_good;

set './em_save_test_verygood.sas7bdat';

predprob_verygood=em_eventprobability;

class_verygood=em_classtarget;

keep _dataobs_ class_verygood predprob_verygood;

run;

243

proc sort;

by _dataobs_;

run;

data all_data;

merge rating very_bad bad okay good very_good;

by _dataobs_;

if cmiss(predprob_verybad, predprob_bad,

predprob_okay, predprob_good, predprob_verygood)=0;

run;

data all_data;

set all_data;

predprob_max=max(predprob_very_bad, predprob_bad,

predprob_okay, predprob_good, predprob_very_good);

if (predprob_very_good=predprob_max) then pred_class='very good';

if (predprob_very_bad=predprob_max) then pred_class='very bad';

if (predprob_bad=predprob_max) then pred_class='bad';

if (predprob_okay=predprob_max) then pred_class='okay';

if (predprob_good=predprob_max) then pred_class='good';

keep rating pred_class;

run;

data all_data;

set all_data;

match=(rating=pred_class);

run;

proc sql;

select mean(match) as accuracy

from all_data;

quit;

Setting the activation function to the default value of tanh, we run the diagram and the SAS code
again to output the accuracy of

244

The model with the logistic activation function has a higher accuracy.

In R:

movie.data<- read.csv(�le="./movie_data.csv", header=TRUE, sep=",")

movie.data$gender<- ifelse(movie.data$gender=='M',1,0)
movie.data$member<- ifelse(movie.data$member=='yes',1,0)

movie.data$rating<- ifelse(movie.data$rating=='very bad',1, ifelse(movie.data$rating=='bad',2,ifelse(movie.data$rating=='okay',3,
ifelse(movie.data$rating=='good',4,5))))

#SCALING VARIABLES TO FALL IN [0,1]
library(dplyr)

scale01 <- function(x){
(x-min(x))/(max(x)-min(x))

}

movie.data<- movie.data %>% mutate_all(scale01)

#SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS
set.seed(100001)
sample <- sample(c(TRUE, FALSE), nrow(movie.data), replace=TRUE, prob=c(0.8,0.2))
train<- movie.data[sample,]
test<- movie.data[!sample,]

train.x<- data.matrix(train[-5])
train.y<- data.matrix(train[5])
test.x<- data.matrix(test[-5])
test.y<- data.matrix(test[5])

245

#FITTING ANN WITH LOGISTIC ACTIVATION FUNCTION
library(neuralnet)
set.seed(4544446)
ann.mclass<- neuralnet(as.factor(rating) ∼ age + gender + member + nmovies, data=train, hid-
den=3, act.fct="logistic")

#PLOTTING THE DIAGRAM
plot(ann.mclass)

#COMPUTING PREDICTION ACCURACY FOR TESTING DATA
pred.prob <- predict(ann.mclass, test.x)
pred.prob<- as.data.frame(pred.prob)

colnames(pred.prob)<- c(0, 0.25, 0.5, 0.75, 1)

246

pred.class<- apply(pred.prob, 1, function(x) colnames(pred.prob)[which.max(x)])

match<- c()
for (i in 1:length(test.y)) {

match[i]<- ifelse(pred.class[i]==as.character(test.y[i]),1,0)
}

print(accuracy<- mean(match))
0.3611111

In Python:

247

248

accuracy= 0.3158

2

RECURRENT NEURAL NETWORK

A recurrent neural network (RNN) is a type of neural network in which the output is determined
by the current input and previously received inputs. RNN is used to model time series data. The
simple RNN repeating modules have a basic structure with a single layer, and it remembers only
one previous time step information. Simple RNN models usually run into two major issues:

• Vanishing Gradient problem occurs when the gradient becomes so small that updating param-
eters becomes insigni�cant; eventually, the algorithm stops learning.

249

• Exploding Gradient problem occurs when the gradient becomes too large, which makes the
model unstable. In this case, larger error gradients accumulate, and the model weights become too
large. This issue can cause longer training times and poor model performance.

More advanced RNN architectures that easily solve these problems are long short term mem-
ory (LSTM) and gated recurrent unit (GRU), as they are capable of remembering long periods
of information. The LSTM has four interacting layers that communicate with each other. This
four-layered structure helps LSTM retain long-term memory. The gated recurrent unit (GRU) is a
variation of LSTM. It uses an update gate and reset gate to solve the vanishing gradient problem.
These gates decide what information is important and pass it to the output. The gates can be
trained to store information from long ago.

Example. We �t LSTM and GRU recurrent neural networks to the data in the �le "TSLA.csv".
This �le contains daily closing Tesla stock price between 6/29/2010 and 3/13/2023, a total of 3198
observations. These historical data were downloaded from https://yahoo�nance.com. We use R and
Python.

In R:

tsla.data<- read.csv(�le="./TSLA.csv", header=TRUE, sep=",")

#splitting data into testing and training sets
tsla.data$Year<- as.numeric(format(as.Date(tsla.data$Date, format="%Y-%m-%d"),"%Y"))

train.data<- tsla.data[which(tsla.data$Year<2022),1:2]
test.data<- tsla.data[which(tsla.data$Year>=2022),1:2]

#plotting training and testing data
plot(as.POSIXct(tsla.data$Date), tsla.data$Close, main="Daily Tesla Stock Closing Prices", xlab="Time",
ylab="Stock Price", pch="", panel.�rst=grid())

250

lines(as.POSIXct(train.data$Date), train.data$Close, lwd=2, col="blue")
lines(as.POSIXct(test.data$Date), test.data$Close, lwd=2, col="green")
legend("topleft", c("training", "testing"), lty=1, col=c("blue","green"))

#scaling prices to fall in [0,1]
price<- tsla.data$Close
price.sc<- (price-min(price))/(max(price)-min(price))

#creating train.x and train.y
nsteps<- 60 #width of sliding window
train.matrix <- matrix(nrow=nrow(train.data)-nsteps, ncol=nsteps+1)
for (i in 1:(nrow(train.data)-nsteps))

train.matrix[i,]<- price.sc[i:(i+nsteps)]

251

train.x<- array(train.matrix[,-ncol(train.matrix)],dim=c(nrow(train.matrix),nsteps,1))
train.y<- train.matrix[,ncol(train.matrix)]

#creating test.x and test.y
test.matrix<- matrix(nrow=nrow(test.data), ncol=nsteps+1)
for (i in 1:nrow(test.data))

test.matrix[i,]<- price.sc[(i+nrow(train.matrix)):(i+nsteps+nrow(train.matrix))]

test.x<- array(test.matrix[,-ncol(test.matrix)],dim=c(nrow(test.matrix),nsteps,1))
test.y<- test.matrix[,ncol(test.matrix)]

#FITTING LSTM MODEL
library(keras)
LSTM.model <- keras_model_sequential()

#specifying model structure
LSTM.model %>% layer_lstm(input_shape=dim(train.x)[2:3], units=nsteps)
LSTM.model %>% layer_dense(units=1, activation="tanh")
LSTM.model %>% compile(loss="mean_squared_error")

#training model
epochs<- 5
for(i in 1:epochs){

LSTM.model %>% �t(train.x, train.y, batch_size=32, epochs=1)
LSTM.model %>% reset_states() #clears the hidden states in network after every batch

}

#predicting for testing data
pred.y<- LSTM.model %>% predict(test.x, batch_size=32)

#rescaling test.y and pred.y back to the original scale
test.y.re<- test.y*(max(price)-min(price))+min(price)
pred.y.re<- pred.y*(max(price)-min(price))+min(price)

#computing prediction accuracy
accuracy10<- ifelse(abs(test.y.re-pred.y.re)<0.10*test.y.re,1,0)
accuracy15<- ifelse(abs(test.y.re-pred.y.re)<0.15*test.y.re,1,0)
accuracy20<- ifelse(abs(test.y.re-pred.y.re)<0.20*test.y.re,1,0)

print(paste("accuracy within 10%:", round(mean(accuracy10),4)))

"accuracy within 10%: 0.8494"

252

print(paste("accuracy within 15%:", round(mean(accuracy15),4)))

"accuracy within 15%: 0.9632"

print(paste("accuracy within 20%:", round(mean(accuracy20),4)))

"accuracy within 20%: 0.9933"

#plotting actual and predicted values for testing data
plot(as.POSIXct(test.data$Date), test.y.re, type="l", lwd=2, col="green", main="Daily Tesla Stock
Actual and Predicted Prices - LSTMModel", xlab="Time", ylab="Stock Price", panel.�rst=grid())
lines(as.POSIXct(test.data$Date), pred.y.re, lwd=2, col="orange")
legend("topright", c("actual", "predicted"), lty=1, lwd=2, col=c("green","orange"))

253

#FITTING GRU MODEL
GRU.model <- keras_model_sequential()

#specifying model structure
GRU.model %>% layer_gru(input_shape=dim(train.x)[2:3], units=nsteps)
GRU.model %>% layer_dense(units=1, activation="tanh")
GRU.model %>% compile(loss="mean_squared_error")

#training model
epochs<- 5
for(i in 1:epochs){

GRU.model %>% �t(train.x, train.y, batch_size=32, epochs=1)
GRU.model %>% reset_states()

}

#predicting for testing data
pred.y<- GRU.model %>% predict(test.x, batch_size=32)

#rescaling pred.y back to the original scale
pred.y<- pred.y*(max(price)-min(price))+min(price)

#computing prediction accuracy
accuracy10<- ifelse(abs(test.y.re-pred.y.re)<0.10*test.y.re,1,0)
accuracy15<- ifelse(abs(test.y.re-pred.y.re)<0.15*test.y.re,1,0)
accuracy20<- ifelse(abs(test.y.re-pred.y.re)<0.20*test.y.re,1,0)

print(paste("accuracy within 10%:", round(mean(accuracy10),4)))

"accuracy within 10%: 0.7659"

print(paste("accuracy within 15%:", round(mean(accuracy15),4)))

"accuracy within 15%: 0.9164"

print(paste("accuracy within 20%:", round(mean(accuracy20),4)))

"accuracy within 20%: 0.99"

#plotting actual and predicted values for testing data
plot(as.POSIXct(test.data$Date), test.y.re, type="l", lwd=2, col="green", main="Daily Tesla Stock
Actual and Predicted Prices - GRU Model", xlab="Time", ylab="Stock Price", panel.�rst=grid())

254

lines(as.POSIXct(test.data$Date), pred.y.re, lwd=2, col="orange")
legend("topright", c("actual", "predicted"), lty=1, lwd=2, col=c("green","orange"))

In Python:

255

256

257

258

259

260

261

2

Example. We consider the data in �le "TSLA_Shocks.csv". For the variable of interest, we took
the daily stock volume and computed an indicator variable for shock, which we de�ned as the
situation when the traded volume increased or decreased by more than 15% in one business day.
The binary variable Shock contains 44.85% of ones. We �t LSTM and GRU networks for the binary
response variable.

In R:

tsla.data<- read.csv(�le="./TSLA_Shocks.csv", header=TRUE, sep=",")

#splitting data into testing and training sets
tsla.data$Year<- as.numeric(format(as.Date(tsla.data$Date, format="%Y-%m-%d"),"%Y"))
train.data<- tsla.data[which(tsla.data$Year<2022),1:2]

262

test.data<- tsla.data[which(tsla.data$Year>=2022),1:2]

nsteps<- 60 #width of sliding window
train.matrix <- matrix(nrow=nrow(train.data)-nsteps, ncol=nsteps+1)
for (i in 1:(nrow(train.data)-nsteps))

train.matrix[i,]<- tsla.data$Shock[i:(i+nsteps)]

train.x<- array(train.matrix[,-ncol(train.matrix)],dim=c(nrow(train.matrix),nsteps,1))
train.y<- train.matrix[,ncol(train.matrix)]

#creating test.x and test.y
test.matrix<- matrix(nrow=nrow(test.data), ncol=nsteps+1)
for (i in 1:nrow(test.data))
test.matrix[i,]<- tsla.data$Shock[(i+nrow(train.matrix)):(i+nsteps+nrow(train.matrix))]

test.x<- array(test.matrix[,-ncol(test.matrix)],dim=c(nrow(test.matrix),nsteps,1))
test.y<- test.matrix[,ncol(test.matrix)]

#FITTING LSTM MODEL
library(keras)
#de�ning model architecture
LSTM.biclass<- keras_model_sequential()
LSTM.biclass %>% layer_dense(input_shape=dim(train.x)[2:3], units=nsteps)
LSTM.biclass %>% layer_lstm(units=25)
LSTM.biclass %>% layer_dense(units=1, activation="sigmoid")
LSTM.biclass %>% compile(loss="binary_crossentropy")

#training model
LSTM.biclass %>% �t(train.x, train.y, batch_size=32, epochs=5)

#computing prediction accuracy for testing data
pred.prob<- LSTM.biclass %>% predict(test.x)
match<- cbind(test.y, pred.prob)
tp<- matrix(NA, nrow=nrow(match), ncol=99)
tn<- matrix(NA, nrow=nrow(match), ncol=99)

for (i in 1:99) {
tp[,i]<- ifelse(match[,1]==1 & match[,2]>0.01*i,1,0)
tn[,i]<- ifelse(match[,1]==0 & match[,2]<=0.01*i,1,0)

}

trueclassrate<- matrix(NA, nrow=99, ncol=2)

263

for (i in 1:99){
trueclassrate[i,1]<- 0.01*i
trueclassrate[i,2]<- sum(tp[,i]+tn[,i])/nrow(match)

}

print(trueclassrate[which(trueclassrate[,2]==max(trueclassrate[,2])),])

[,1] [,2]

[1,] 0.53 0.795302

[2,] 0.54 0.795302

[3,] 0.55 0.795302

. . .

[45,] 0.97 0.795302

[46,] 0.98 0.795302

[47,] 0.99 0.795302

The prediction accuracy is 79.53% for any cut-o� between 0.53 and 0.99.

#FITTING GRU MODEL
#de�ning model architecture
GRU.biclass<- keras_model_sequential()
GRU.biclass %>% layer_dense(input_shape=dim(train.x)[2:3], units=nsteps)
GRU.biclass %>% layer_lstm(units=25)
GRU.biclass %>% layer_dense(units=1, activation="sigmoid")
GRU.biclass %>% compile(loss="binary_crossentropy")

#training model
GRU.biclass %>% �t(train.x, train.y, batch_size=32, epochs=5)

#computing prediction accuracy for testing data
pred.prob<- GRU.biclass %>% predict(test.x)
match<- cbind(test.y, pred.prob)
tp<- matrix(NA, nrow=nrow(match), ncol=99)
tn<- matrix(NA, nrow=nrow(match), ncol=99)

for (i in 1:99) {
tp[,i]<- ifelse(match[,1]==1 & match[,2]>0.01*i,1,0)
tn[,i]<- ifelse(match[,1]==0 & match[,2]<=0.01*i,1,0)

}

trueclassrate<- matrix(NA, nrow=99, ncol=2)
for (i in 1:99) {

264

trueclassrate[i,1]<- 0.01*i
trueclassrate[i,2]<- sum(tp[,i]+tn[,i])/nrow(match)

}

print(trueclassrate[which(trueclassrate[,2]==max(trueclassrate[,2])),])

[,1] [,2]

[1,] 0.52 0.795302

[2,] 0.53 0.795302

[3,] 0.54 0.795302

. . .

[46,] 0.97 0.795302

[47,] 0.98 0.795302

[48,] 0.99 0.795302

The prediction accuracy is 79.53% for any cut-o� between 0.52 and 0.99.

In Python:

265

266

267

accuracy cut-off

47 0.795302 0.48

48 0.795302 0.49

49 0.795302 0.50

. . .

96 0.795302 0.97

97 0.795302 0.98

98 0.795302 0.99

The prediction accuracy is 79.53% for any cut-o� between 0.48 and 0.99.

268

accuracy cut-off

49 0.795302 0.50

50 0.795302 0.51

51 0.795302 0.52

. . .

269

96 0.795302 0.97

97 0.795302 0.98

98 0.795302 0.99

The prediction accuracy is 79.53% for any cut-o� between 0.48 and 0.99. 2

Example. The �le "LA_weather.csv" contains hourly weather conditions in LA (rain/fog/clear/cloudy)
between 10/1/2012 12 PM and 11/30//2017 12 AM. There data were downloaded from kaggle.com
and cleaned. We use this data set to �t RNN for multinomial classi�cation in R and Python.

In R:

LA.weather<- read.csv(�le="./LA_weather.csv", header=TRUE, sep=",")

LA.weather$Rain<- ifelse(LA.weather$Condition=="rain",1, 0)
LA.weather$Fog<- ifelse(LA.weather$Condition=="fog",1, 0)
LA.weather$Clear<- ifelse(LA.weather$Condition=="clear",1,0)
LA.weather$Cloudy<- ifelse(LA.weather$Condition=="cloudy",1,0)
LA.weather$Year<- format(as.Date(LA.weather$Date, format="%Y-%m-%d"),"%Y")

#DEFINING FUNCTION THAT FITS RNN MODEL

rnn.model<- function(modelname, varname) {

#creating train.x, train.y, test.x, and test.y sets
train.data<- LA.weather[which(LA.weather$Year<2017),varname]
test.data<- LA.weather[which(LA.weather$Year==2017),varname]

nsteps<- 60
train.matrix <- matrix(nrow=length(train.data)-nsteps, ncol=nsteps+1)
for (i in 1:(length(train.data)-nsteps))

train.matrix[i,]<- LA.weather[i:(i+nsteps),varname]

train.x<- array(train.matrix[,-ncol(train.matrix)],dim=c(nrow(train.matrix),nsteps,1))
train.y<- train.matrix[,ncol(train.matrix)]

test.matrix<- matrix(nrow=length(test.data), ncol=nsteps+1)
for (i in 1:length(test.data))

test.matrix[i,]<- LA.weather[(i+nrow(train.matrix)):(i+nsteps+nrow(train.matrix)),varname]

270

test.x<- array(test.matrix[,-ncol(test.matrix)],dim=c(nrow(test.matrix),nsteps,1))
test.y<- test.matrix[,ncol(test.matrix)]

#de�ning model architecture
library(keras)
�tted.model<- keras_model_sequential()
�tted.model %>% layer_dense(input_shape=dim(train.x)[2:3], units=nsteps)
if (modelname=='lstm') {

�tted.model %>% layer_lstm(units=6)
} else �tted.model %>% layer_gru(units=6)
�tted.model %>% layer_dense(units=1, activation='sigmoid')
�tted.model %>% compile(loss='binary_crossentropy')

#training model
�tted.model %>% �t(train.x, train.y, batch_size=32, epochs=5)

#computing predicted probability of rain for testing data
pred.prob<- �tted.model %>% predict(test.x)
return(list(test.y, pred.prob))
}

#DEFINING FUNCTION THAT COMPUTES PREDICTION ACCURACY
library(dplyr)

accuracy<- function() {

test.y<- bind_cols(test.rain, test.fog, test.clear, test.cloudy)
colnames(test.y)<- 1:4
true.class<- as.numeric(apply(test.y, 1, function(x) colnames(test.y)[which.max(x)]))

pred.prob<- bind_cols(pred.prob.rain, pred.prob.fog, pred.prob.clear, pred.prob.cloudy)
colnames(pred.prob)<- 1:4
pred.class<- as.numeric(apply(pred.prob, 1, function(x) colnames(pred.prob)[which.max(x)]))

match<- c()
for (i in 1:length(pred.class)) {

match[i]<- ifelse(pred.class[i]==true.class[i],1,0)
}
return(round(mean(match),4))
}

#RUNNING LSTM BINARY CLASSIFICATION MODELS

271

list.rain<- (rnn.model('lstm', 'Rain'))
test.rain<- list.rain[1]
pred.prob.rain<- list.rain[2]

list.fog<- rnn.model('lstm', 'Fog')
test.fog<- list.fog[1]
pred.prob.fog<- list.fog[2]

list.clear<- rnn.model('lstm', 'Clear')
test.clear<- list.clear[1]
pred.prob.clear<- list.clear[2]

list.cloudy<- rnn.model('lstm', 'Cloudy')
test.cloudy<- list.cloudy[1]
pred.prob.cloudy<- list.cloudy[2]
print(accuracy())

0.7772

#RUNNING GRU BINARY CLASSIFICATION MODELS
list.rain<- (rnn.model('gru', 'Rain'))
test.rain<- list.rain[1]
pred.prob.rain<- list.rain[2]

list.fog<- rnn.model('gru', 'Fog')
test.fog<- list.fog[1]
pred.prob.fog<- list.fog[2]

list.clear<- rnn.model('gru', 'Clear')
test.clear<- list.clear[1]
pred.prob.clear<- list.clear[2]

list.cloudy<- rnn.model('gru', 'Cloudy')
test.cloudy<- list.cloudy[1]
pred.prob.cloudy<- list.cloudy[2]
print(accuracy())

0.7802

In Python:

272

273

274

275

276

277

278

0.7533

We �t a GRU model by running the code identical to the one for LSTM above, but with 'LSTM'
replaced by 'GRU'. The prediction accuracy for this model is

0.7801

2

CHANGE-POINT DETECTION

Consider a time series data set consisting of n normally distributed observations. And suppose that
the �rst segment of k observations has a N(µ1, σ

2) distribution whereas the remaining segment of
n − k observations has a N(µ2, σ

2) distribution where µ1 6= µ2. That is, a change in mean occurs
at some unknown step k. The change-point detection is a collection of methods to identify the
value of k.

The change-point detection problem is also applicable to �nding k when the mean doesn't change
but the variance does, or when both mean and variance change. It also extends to the case of
several segments with di�erent means, variances, or both.

There are many well-developed methods to identify the point(s) of change. We will present the
theory for the most basic approach.

The method of binary segmentation is often used to detect the change points. First, one change
point is detected in the complete set of observations, then the series is split around this change
point, and the algorithm is applied to the two resulting segments. The process continues until a
pre-speci�ed number of splits is detected.

279

To identify the value of k where the change occurs, the method of maximum likelihood estimation
is employed. We assume that y1, . . . , yk ∼ N(µ1, σ

2), and yk+1, . . . , yn ∼ N(µ2, σ
2). The maximum

likelihood estimators of µ1, µ2, and σ
2 are

µ̂1 = ȳ1 =
1

k

k∑
i=1

yi, µ̂2 = ȳ2 =
1

n− k

n∑
i=k+1

yi,

and

σ̂2 =
1

n− 1

n∑
i=1

(
yi − ȳ)2, where ȳ =

1

n

n∑
i=1

yi.

The likelihood function for these data has the form:

L = L(µ̂1, µ̂2, σ̂
2 | y1, . . . , yn) = (2π σ̂2)−n/2 exp

{
−
∑k

i=1 (yi − ȳ1)2 +
∑n

i=k+1 (yi − ȳ2)2

2 σ̂2

}
.

The value of k that maximizes the likelihood function is the optimal one.

To apply the change-point detection to real-life data, we will use the library "changepoint" in R,
and utilize functions cpt.mean(), cpt.var(), and cpt.meanvar() with options method="BinSeg" (bi-
nary segmentation), Q= (the number of splits k), and penalty="AIC". Here AIC stands for Akaike
Information Criterion which dictates choosing k that minimizes AIC = −2 lnL + p lnn where p is
the number of parameters that have to be estimated from the data (in our example, we estimated
µ1, µ2 and σ

2, so p = 3).

Example. The �le "crudeoil_data.csv" contains daily closing prices of (Brent) crude oil between
2000 and 2022. These data were extracted from the �le �commodity 2000-2022.csv� downloaded
from kaggle.com. We apply change-point methods to identify changes in mean, changes in variance,
and simultaneous changes in mean and variance.

#application to crude oil's closing price data
crudeoil.data<- read.csv(�le="./crudeoil_data.csv", header=TRUE, sep=",")

library(changepoint)
ansmean=cpt.mean(crudeoil.data$Close, penalty="AIC", method="BinSeg", Q=3)
plot(ansmean, cpt.col="red", ylab="Daily Closing Price", main="Change Point Detection for
Change in Mean")
print(ansmean)

280

Changepoint Locations : 1368 2794 3816

ansvar=cpt.var(crudeoil.data$Close, penalty="AIC", method="BinSeg", Q=3)
plot(ansvar, cpt.col="red", ylab="Daily Closing Price", main="Change Point Detection for Change
in Variance")
print(ansvar)

281

Changepoint Locations : 1144 2827 3784

ansmeanvar=cpt.meanvar(crudeoil.data$Close, penalty="AIC", method="BinSeq", Q=3)
plot(ansmeanvar, cpt.col="red", ylab="Daily Closing Price", main="Change Point Detection for
Change in Mean and Variance")
print(ansmeanvar)

282

Changepoint Locations : 1140 2812 3816

2

ANOMALY DETECTION

Anomalies of a time series data can be de�ned as outliers of the remainders once the linear trend
and seasonal periodicity are taken into account.

We use library "anomalize" in R to identify anomalies. We call the function time_decompose()

with the option method="stl" (factoring the linear and seasonal components), and the function
anomalize() with the option method="iqr". By default, this method de�nes outliers as observa-
tions lying below Q1−3 ·IQR or above Q3+3 ·IQR, where Q1 is the �rst quartile (25th percentile),

283

Q3 is the third quartile (75th percentile), and the interquartile range is IQR = Q3−Q1.
The default setting can be changed by specifying a value for alpha other than 0.05 (option "al-
pha="). Outliers are de�ned as values that lie 0.15/α×IQR distance away from the quartiles. The
default value of α = 0.05, thus resulting in the multiplicative constant of 3. If alpha is increased,
more observations become outliers. If alpha is decreased, fewer observations are labeled as outliers.

Example. We use the crude oil data from the previous example to detect and plot anomalies in
the daily closing prices.

crudeoil.data<- read.csv(�le="./crudeoil_data.csv", header=TRUE, sep=",")

crudeoil.data$Date<- as.Date(crudeoil.data$Date, format="%Y-%m-%d")

library(tibbletime) #creates indices for date in time series data
crudeoil.data_tbl <- as_tbl_time(crudeoil.data, Date)

library(anomalize)
library(tidyverse)
crudeoil.data_tbl %>% time_decompose(Close, method="stl") %>% anomalize(remainder, method="iqr")
%>% time_recompose() %>% plot_anomalies(time_recomposed=TRUE, color_no='navy', color_yes='red',
�ll_ribbon='gray', size_circles=4) + labs(title="Anomalies in Daily Closing Prices of Crude Oil",
subtitle="1/4/2000-4/8/2022")

284

NATURAL LANGUAGE PROCESSING (TEXT MINING)

Natural Language Processing (NLP) is a collection of techniques that allows working with and
analyzing strings of words. Some most common applications are summarizing large volumes of
text (e.g., computing word frequencies for di�erent authors) and categorizing sentences (e.g., clas-
sifying news headlines as negative/neutral/positive, or classifying customer complaints by issues
addressed). Below we consider two examples.

Example. The R code below downloads a digital book from the Project Gutenberg collection,
divides the text into words, removing all articles, prepositions, etc. (called "stopwords"), computes
frequency distribution of words, and visualizes the results by plotting bar graph and word cloud.

285

#install.packages(c("gutenbergr", "stringr", "dplyr", "tidytext", "stopwords", "tibble", "ggraph",
"wordcloud"))

library(gutenbergr)
library(stringr)
library(dplyr)
library(tidytext)
library(stopwords)
library(tibble)
library(ggplot2)
library(wordcloud)

book<- gutenberg_download(108, meta_�elds="author")

#puts text into tibble format
book<- as_tibble(book) %>% mutate(document=row_number())
%>% select(-gutenberg_id)

#creates tokens (words)
#tokenization is the process of splitting text into tokens
tidy_book <- book %>% unnest_tokens(word, text) %>%
group_by(word) %>% �lter(n() > 10) %>% ungroup()

#identifying and removing stopwords (prepositions, articles)
stopword<- as_tibble(stopwords::stopwords("en"))
stopword<- rename(stopword, word=value)
tb <- anti_join(tidy_book, stopword, by="word")

#calculating word frequency
word_count<- count(tb, word, sort=TRUE)
print(word_count, n=15)

word n

1 holmes 703

2 said 499

3 one 449

4 mr 412

5 upon 411

6 man 367

7 well 303

8 us 279

9 can 238

286

10 see 237

11 room 229

12 now 227

13 watson 210

14 come 189

15 sir 188

#plotting bar graph
tb %>% count(author, word, sort=TRUE) %>%
�lter(n > 200) %>% mutate(word=reorder(word, n)) %>%
ggplot(aes(word, n)) + geom_col(aes(�ll=author)) + xlab(NULL)
+ scale_y_continuous(expand=c(0, 0)) + coord_�ip() +
theme_classic(base_size = 12) + labs(�ll="Author", title="Word frequency",
subtitle="n > 200") + theme(plot.title=element_text(lineheight=.8, face="bold")) + scale_�ll_brewer()

287

#plotting word cloud
tb %>% count(word) %>%with(wordcloud(word, n, max.words=25, colors=brewer.pal(8, "Dark2")))
#brewer.pal(n,name) = color palette, n=# of colors, name=c("Accent", "Dark2", "Paired"
#"Pastel1", "Pastel2", "Set1", "Set2", "Set3")

288

Example. The data set "FinancialNewsHeadlines.csv" contains the sentiments for �nancial news
headlines from the perspective of an investor. It was downloaded from Kaggle (https://www.kaggle.com/
datasets/ankurzing/sentiment-analysis-for-�nancial-news). The data set contains two columns,
"Sentiment" and "News Headline". The sentiment can be negative, neutral, or positive. We con-
duct a sentiment analysis on these data by training aBidirectional Encoder Representations
from Transformers (BERT) model. This methodology was introduced in 2018 by researchers
at Google. BERT learns information from a text from the left and right side of each word during
training and consequently gains a deeper understanding of the context. We compute the accuracy
of prediction and test the model with a few sentences of our own.

289

290

291

292

neutral 2871

positive 1362

negative 604

293

0.805

294

neutral

positive

negative

Note that the trained BERT model has 80.5% accuracy and that last statement is misclassi�ed. 2

CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network (CNN) is one of the most popular types of deep learning algo-
rithms. It works well on images.

A CNN is an excellent tool for (i) image classi�cation (categorization of image: cat/dog/horse),
(ii) classi�cation and localization of an object in the image (drawing a bounding box around an

295

object and naming the class); (iii) object detection (localization and labeling of all objects present
in the image); and (iv) instance segmentation (segmenting individual objects present in the picture).

Historical Note. The earliest form of CNN was the Neocognitron model proposed by Kunihiko
Fukushima (Fukushima and Miyake, 1982). The Neocognitron was motivated by the seminal work
by David Hubel and Torsten Wiesel (1959) which demonstrated that the neurons in the brain are
organized in the form of layers. These layers learn to recognize visual patterns by �rst extracting
local features and subsequently combining them to obtain a higher-level representations.

The architecture of CNN comprises several layers: a convolution layer, a pooling layer, and a
fully connected layer.

Convolution Layer

An image of size r × c pixels is represented by three matrices of size r × c each, containing the
intensity values of red, green, and blue primary colors (numbers between 0 and 255) on the RGB
scale. The convolution layer performs a dot product between two matrices, where one matrix is
the set of learnable parameters (otherwise known as a kernel or �lter or feature detector),
and the other matrix is the restricted portion of the image.

Example. Mathematically, the kernel is a matrix of weights. For example, the following 3 × 3
kernel detects vertical lines.

296

Suppose we have an 9 × 9 input image of a plus sign. This has two kinds of lines, horizontal and
vertical, and a crossover. In matrix format, the image would look as follows:

Suppose we want to test the vertical line detector kernel on the plus sign image. To perform the
convolution, we slide the convolution kernel over the image. At each position, we multiply each
element of the convolution kernel by the element of the image that it covers and sum the results.

Since the kernel has width 3, it can only be positioned at 7 di�erent positions horizontally in an
image of width 9. So the end result of the convolution operation on an image of size 9 × 9 with a
3× 3 convolution kernel is a new image of size 7× 7.

297

To see how it works on an image, we consider a grayscaled image of a tabby cat with dimensions
204× 175 pixels, which we can be represented by a matrix with values in the range between 0 and
1, where 1 is white and 0 is black.

Applying the convolution with a sophisticated vertical line detector, a 9× 9 convolution kernel, we
see that the �lter has performed a kind of vertical line detection. The vertical stripes on the tabby
cat's head are highlighted in the output. The output image is 8 pixels smaller in both dimensions
due to the size of the kernel (9× 9).

A convolution layer is made up of a series of convolution kernels: a vertical line detector, a horizon-
tal line detector, and various diagonal, border, curve, and corner detectors. These feature detector
kernels serve as the �rst stage of the image recognition process.

298

Later layers in the neural network can build on the features detected by earlier layers and identify
ever more complex shapes.

Activation Function

After passing an image through a convolutional layer, the output is normally passed through an
activation function. A common activation function is called recti�ed linear unit (ReLU) de�ned
as f(x) = max(0, x). The activation function has the e�ect of adding non-linearity into the con-
volutional neural network. If the activation function was not present, all the layers of the neural
network could be condensed down to a single matrix multiplication. In the case of the cat image
above, applying a ReLU function to the �rst layer output results in a stronger contrast highlighting
the vertical lines, and removing the noise originating from other non-vertical features.

Repeating Structure of a CNN

A CNN can be viewed as a series of convolutional layers, followed by an activation function, followed
by a pooling (downscaling) layer, repeated many times.

With the repeated combination of these operations, the �rst layer detects simple features such as
edges in an image, and the second layer begins to detect higher-level features. By the tenth layer, a
convolutional neural network can detect more complex shapes such as eyes. By the twentieth layer,
it is often able to di�erentiate faces from one another.

This power comes from the repeated layering of operations, each of which can detect slightly higher-
order features than its predecessor.

Once the image is processed through the convolution and pooling layers, it goes into the classi�ca-
tion stage consisting of a �atten layer, a connected layer, and a softmax layer. The �atten layer
collapses the spatial dimensions of the input into a single channel dimension. Fully connected
layers connect every neuron in one layer to every neuron in another layer. The �attened matrix
goes through a fully connected layer to classify the images.

299

Softmax Function

The softmax function is a normalized exponential function that takes as input a vector (z1, . . . , zK)
of K real numbers, and normalizes it into a probability distribution consisting of K probabilities
proportional to the exponentials of the input numbers. That is, before applying softmax, some vec-
tor components could be negative, or greater than one, and might not sum to 1, but after applying
softmax, each component will be in the interval (0, 1), and the components will add up to 1, so that
they can be interpreted as probabilities. We have

softmax(z1, . . . , zK) =
(ez1∑K

j=1 e
zj
, . . . ,

ezK∑K
j=1 e

zj

)
.

Applications of Convolutional Neural Networks

Several companies, such as Tesla and Uber, are using convolutional neural networks as the computer
vision component of a self-driving car. A self-driving car's computer vision system must be capable
of localization, obstacle avoidance, and path planning.

Say, consider the case of pedestrian detection. A pedestrian is a kind of obstacle that moves. A
convolutional neural network must be able to identify the location of the pedestrian and extrapolate
their current motion to calculate if a collision is imminent.

A convolutional neural network for object detection is slightly more complex than a classi�cation
model, in that it must not only classify an object but also return the four coordinates of its bounding
box.

Furthermore, the convolutional neural network designer must avoid unnecessary false alarms for
irrelevant objects, such as litter, but also take into account the high cost of miscategorizing a true
pedestrian and causing a fatal accident.

A major challenge for this kind of use is collecting labeled training data. Google's Captcha system
is used for authenticating websites, where a user is asked to categorize images as �re hydrants,
tra�c lights, cars, etc. This is actually a useful way to collect labeled training images for purposes
such as self-driving cars and Google StreetView.

Another famous application of CNN is that of drug discovery. The �rst stage of a drug development
program is drug discovery, where a pharmaceutical company identi�es candidate compounds that
are more likely to interact with the body in a certain way. Testing candidate molecules in pre-clinical
or clinical trials is expensive, so it is advantageous to be able to screen molecules as early as possible.

Proteins that play an important role in disease are known as `targets'. Some targets can cause
in�ammation or help tumors grow. The goal of drug discovery is to identify molecules that will
interact with the target for a particular disease. The drug molecule must have the appropriate

300

shape to interact with the target and bind to it, like a key �tting in a lock.

The San Francisco-based startup Atomwise developed an algorithm called AtomNet, based on a
convolutional neural network, which was able to analyze and predict interactions between molecules.

Atomwise was able to use AtomNet to identify lead candidates for drug research programs. Atom-
Net successfully identi�ed a candidate treatment for the Ebola virus, which had previously not been
known to have any antiviral activity. The molecule later went on to pre-clinical trials.

Example. The folder "PlayingCardsImages" contains .jpg images of 43 cards of each suit (clubs,
diamonds, hearts, and spades). The following R code splits the data into a training set (40 cards
of each suit) and a testing set (3 cards of each suit), then a CNN model is trained on the training
set and used to predict the suit for the images in the testing set.

library(keras)
library(EBImage)

setwd("./PlayingCardImages/Club")
img.card<- sample(dir());
cards<- list(NULL);
for(i in 1:length(img.card)) {

cards[[i]]<- readImage(img.card[i])
cards[[i]]<- resize(cards[[i]], 100, 100)

}
club<- cards

setwd("./PlayingCardImages/Heart")
img.card<- sample(dir());
cards<- list(NULL);
for(i in 1:length(img.card)) {

cards[[i]]<- readImage(img.card[i])
cards[[i]]<- resize(cards[[i]], 100, 100)

}
heart<- cards

setwd("./PlayingCardImages/Spade")
img.card<- sample(dir());
cards<- list(NULL);
for(i in 1:length(img.card)) {

cards[[i]]<- readImage(img.card[i])
cards[[i]]<- resize(cards[[i]], 100, 100)

}

301

spade<- cards

setwd("./PlayingCardImages/Diamond")
img.card<- sample(dir());
cards<- list(NULL);
for(i in 1:length(img.card)) {

cards[[i]]<- readImage(img.card[i])
cards[[i]]<- resize(cards[[i]], 100, 100)

}
diamond<- cards

#splitting into training and testing sets and permuting dimensions
train.pool<- c(club[1:40], heart[1:40], spade[1:40], diamond[1:40])
train<- aperm(combine(train.pool), c(4,1,2,3))
test.pool<- c(club[41:43], heart[41:43], spade[41:43], diamond[41:43])
test<- aperm(combine(test.pool), c(4,1,2,3))

#creating image labels
train.y<- c(rep(0,40),rep(1,40),rep(2,40),rep(3,40))
test.y<- c(rep(0,3),rep(1,3),rep(2,3),rep(3,3))
train.lab<- to_categorical(train.y)
test.lab<- to_categorical(test.y)

#building model
model.card<- keras_model_sequential()
model.card %>% layer_conv_2d(�lters=40, kernel_size=c(4,4),
activation='relu', input_shape=c(100,100,4)) %>%
layer_conv_2d(�lters=40, kernel_size=c(4,4), activation='relu') %>%
layer_max_pooling_2d(pool_size=c(4,4))%>% layer_dropout(rate=0.25) %>%
layer_conv_2d(�lters=80, kernel_size=c(4,4), activation='relu') %>%
layer_conv_2d(�lters=80, kernel_size=c(4,4), activation='relu') %>%
layer_max_pooling_2d(pool_size=c(4,4)) %>% layer_dropout(rate=0.35) %>%
layer_�atten() %>% layer_dense(units=256, activation='relu') %>%
layer_dropout(rate=0.25) %>% layer_dense(units=4, activation="softmax") %>%

compile(loss='categorical_crossentropy', optimizer=optimizer_adam(), metrics=c("accuracy"))

history<- model.card %>% �t(train, train.lab, epochs=50, batch_size=40, validation_split=0.2)

302

#computing prediction accuracy for testing set
model.card %>% evaluate(test, test.lab)
pred.class<- as.array(model.card %>% predict(test) %>% k_argmax())
print(pred.class)

0 0 0 1 1 1 2 2 2 3 3 3

print(test.y)

0 0 0 1 1 1 2 2 2 3 3 3

print(paste("accuracy=", round(1-mean(test.y!=pred.class),digits=4)))

"accuracy= 1"

2

Example. The built-in data set "MNIST" (short for "Modi�ed National Institute of Standards
and Technology") contains a collection of 70,000, 28×28 images of handwritten digits from 0 to 9.

303

These data are already split into a training set (60,000 images) and a testing set (10,000 images).
The R and Python codes below train a CNN model and classify digits in the testing set. The
prediction accuracy is computed.

In R:

library(keras)

mnist<- dataset_mnist()
train.x<- mnist$train$x #x=images
train.y<- mnist$train$y #y=labels
test.x<- mnist$test$x
test.y<- mnist$test$y

str(train.x)

int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

str(train.y)

int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4 ...

str(test.x)

int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

str(test.y)

int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9 ...

index.image<- 2700 #picked randomly
input.matrix<- train.x[index.image,1:28,1:28]
output.matrix<- apply(input.matrix, 2, rev)
output.matrix<- t(output.matrix)
image(1:28, 1:28, output.matrix, col=gray.colors(256), xlab=paste('Image for digit of: ', train.y[index.image]),
ylab="")

304

#specifying parameters
batch.size<- 128
num.classes<- 10
epochs<- 20
img.rows<- 28
img.cols<- 28

train.x<- array_reshape(train.x, c(nrow(train.x), img.rows, img.cols, 1))
test.x<- array_reshape(test.x, c(nrow(test.x), img.rows, img.cols, 1))
input.shape<- c(img.rows, img.cols, 1)

#rescaling images
train.x<- train.x/255
test.x<- test.x/255

#converting class vectors to binary class matrices
train.y<- to_categorical(train.y, num.classes)
test.lab<- to_categorical(test.y, num.classes)

#de�ning model architecture
cnn_model<- keras_model_sequential() %>%
layer_conv_2d(�lters=32, kernel_size=c(3,3), activation='relu', input_shape=input.shape) %>%
layer_max_pooling_2d(pool_size=c(2, 2)) %>%
layer_conv_2d(�lters=64, kernel_size=c(3,3), activation='relu') %>%
layer_max_pooling_2d(pool_size=c(2, 2)) %>%

305

layer_dropout(rate=0.25) %>% layer_�atten() %>%
layer_dense(units=128, activation='relu') %>% layer_dropout(rate=0.5) %>%
layer_dense(units=num.classes, activation='softmax')

#compiling model
cnn_model %>% compile(loss=loss_categorical_crossentropy, optimizer=optimizer_adam(), met-
rics=c('accuracy'))

#training model
cnn_model %>% �t(train.x, train.y, batch_size=batch.size, epochs=epochs, validation_split=0.2)

#computing prediction accuracy
cnn_model %>% evaluate(test.x, test.lab)
pred.class<- as.array(cnn_model %>% predict(test.x) %>% k_argmax())
head(pred.class, n=50)

[1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0

[30] 1 3 1 3 4 7 2 7 1 2 1 1 7 4 2 3 5 1 2 4 4

306

head(test.y, n=50)

[1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0

[30] 1 3 1 3 4 7 2 7 1 2 1 1 7 4 2 3 5 1 2 4 4

print(paste("accuracy=", round(1-mean(test.y!=pred.class), digits=4)))

"accuracy= 0.9924"

#displaying misclassi�ed images
missed.image<- mnist$test$x[pred.class != mnist$test$y�]
missed.digit<- mnist$test$y[pred.class != mnist$test$y]
missed.pred<- pred.class[pred.class != mnist$test$y]

index.image<- 270
input.matrix<- missed.image[index.image,1:28,1:28]
output.matrix<- apply(input.matrix, 2, rev)
output.matrix <- t(output.matrix)
image(1:28, 1:28, output.matrix, col=gray.colors(256), xlab=paste('Image for digit ', missed.digit[index.image],',
wrongly predicted as ', missed.pred[index.image]), ylab="")

In Python:

307

308

Prediction Accuracy: 97.25 %

2

Example. The folder "PetsImages" contains the training set of 45 images of cats and 45 im-
ages of dogs, and a testing set of 34 images of our own pets (12 images of cats and 22 images of
dogs). The R and Python codes below train a CNN model and classify the images in the testing set.

In R:
library(keras)
library(EBImage)

train.�les<- Sys.glob(�le.path("./PetsImages/train/*.jpg"))
train.labels<- substring(basename(train.�les), 1,3) #extracting label: 'cat' or 'dog'
train.lab<- as.numeric(ifelse(train.labels=='cat',1,0))

309

setwd("./PetsImages/train")
img.pets<- sample(dir());
train.pets<- list(NULL);
for(i in 1:length(img.pets)) {

train.pets[[i]]<- readImage(img.pets[i])
train.pets[[i]]<- resize(train.pets[[i]], 100, 100)

}

train<- aperm(combine(train.pets), c(4,1,2,3)) #permuting dimensions

#building model
cnn.model<- keras_model_sequential() %>%
layer_conv_2d(�lters=32, kernel_size=c(3, 3), activation="relu",
input_shape=c(100, 100, 3)) %>% layer_max_pooling_2d(pool_size=c(2, 2)) %>%
layer_conv_2d(�lters=64, kernel_size=c(3, 3), activation="relu") %>%
layer_max_pooling_2d(pool_size=c(2, 2)) %>%
layer_conv_2d(�lters=128, kernel_size=c(3, 3), activation="relu") %>%
layer_max_pooling_2d(pool_size=c(2, 2)) %>%
layer_conv_2d(�lters=128, kernel_size=c(3, 3), activation="relu") %>%
layer_max_pooling_2d(pool_size=c(2, 2)) %>% layer_�atten() %>%
layer_dense(units=512, activation="relu") %>% layer_dense(units=1, activation="sigmoid")

cnn.model %>% compile(loss="binary_crossentropy", optimizer=optimizer_adam(), metrics="accuracy")

history<- cnn.model %>% �t(train, train.lab, epochs=50, batch_size=40, validation_split=0.2)

310

#computing prediction accuracy for testing set
setwd("./PetsImages/ourpets")
img.pets<- sample(dir());
test.pets<- list(NULL);
for(i in 1:length(img.pets)) {

test.pets[[i]]<- readImage(img.pets[i])
test.pets[[i]]<- resize(test.pets[[i]], 100, 100)

}

test<- aperm(combine(test.pets), c(4,1,2,3))
test.lab<- c(0,1,1,1,1,1,1,1,1,1,1,1,1)

cnn.model %>% evaluate(test, test.lab)
pred.prob<- cnn.model %>% predict(test)

true.class<- ifelse(test.lab==1,'cat','dog')
pred.class<- c()
match<- c()
for (i in 1:length(pred.prob)) {

pred.class[i]<- ifelse(pred.prob[i]>0.5,'cat','dog')

311

match[i]<- ifelse(true.class[i]==pred.class[i],1,0)
}

print(true.class)

[1] "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog"

[15] "dog" "dog" "dog" "dog" "dog" "dog" "dog" "dog" "cat" "cat" "cat" "cat" "cat" "cat"

[29] "cat" "cat" "cat" "cat" "cat" "cat"

print(pred.class)

[1] "dog" "cat" "cat" "cat" "dog" "cat" "cat" "dog" "dog" "dog" "cat" "dog" "dog" "cat"

[15] "cat" "dog" "cat" "cat" "dog" "dog" "cat" "cat" "dog" "dog" "dog" "dog" "cat" "cat"

[29] "cat" "dog" "cat" "cat" "dog" "dog"

print(paste("accuracy=", round(mean(match), digits=4)))

"accuracy= 0.4412"

In Python:

312

313

314

315

Note that every image is classi�ed as a dog.
2

Further Reading
1. Generative Adversarial Networks (GANs)
• https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
• https://realpython.com/generative-adversarial-networks/

2. Self Organizing Maps (SOMs)
• https://davis.wpi.edu/∼matt/courses/soms/#Introduction

3. Restricted Boltzmann Machines (RBMs)
• https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
• https://wiki.pathmind.com/restricted-boltzmann-machine

316

4. Deep Belief Networks (DBNs)
• https://en.wikipedia.org/wiki/Deep_belief_network
• https://www.analyticsvidhya.com/blog/2022/03/an-overview-of-deep-belief-network-dbn-in-deep-

learning/

5. AutoEncoders
• https://towardsdatascience.com/introduction-to-autoencoders-7a47cf4ef14b

6. Learning Vector Quantization (LVQ)
• https://machinelearningmastery.com/learning-vector-quantization-for-machine-learning/

317

