

Prediction of Fraudulent Insurance claims

By: Katya Mora

Table of Contents

- Background Information
- Data
- Type of Method
- SAS Code
- R Code
- Predicted Values

2

Background Information

- In 2018, insurance sectors worldwide amassed a revenue exceeding \$5 trillion.
- Types of insurance fraud
 - staged accidents
 - fake claims
 - exaggerated claims.
 - Each type of fraud requires a different approach to detection, and machine learning can be used to develop targeted models for each type.

Why Predict

- 1. Cost-saving:
 - 1. Save insurance companies a significant amount of money.
 - 2. The ability for insurance companies to conduct more accurate policy pricing
- 2. Improved customer service:
 - 1. Fraudulent claims take time and resources to investigate, and they can delay the processing of legitimate claims.
- 3. Risk management:
 - 1. Insurance companies use fraud prediction models to identify high-risk areas and customers. This allows them to implement preventative measures to reduce the risk of fraud, such as increasing premiums or requiring additional verification steps.

Development

- Machine learning is a useful tool for detecting insurance fraud, since it can analyze vast amounts of data and identify patterns that may be identify fraudulent activity.
- Machine learning techniques can used on historical data to recognize patterns of fraudulent behavior, which can also be updated in real-time to adapt to changing fraud patterns.

Data

- https://www.kaggle.com/datasets /buntyshah/auto-insurance-claimsdata
- ▶ 39 Variables
 - Focus on the following 5:
 - Age
 - Sex
 - Marital Status
 - Police Report Filed
 - Total Claim amount

months_as_customer	Age	policy_number	policy_bind_date	policy_state	policy_csl	policy_deductable	policy_annual_premium	umbrella_limit	insured_zip	Sex	insured_education_level	insured_occupation	insured_hobbies	MaritalStatus	capital-gains	capital-loss	incident_date
328	48			ОН	250/500	1000	1406.91	0	466132		MD	craft-repair	sleeping	Married	53300	0	1/25/2015
228	42	342868	6/27/2006	IN	250/500	2000	1197.22	500000	468176	Male	MD	machine-op-inspct	reading	Single	0	0	1/21/2015
134	29	687698	9/6/2000	OH	100/300	2000	1413.14	5000000	430632	Female	PhD	sales	board-games	Married	35100	0	2/22/2015
256	41	227811	5/25/1990	IL	250/500	2000	1415.74	6000000	608117	Female	PhD	armed-forces	board-games	Single	48900	-62400	1/10/2015
228	44	367455	6/6/2014	IL	500/1000	1000	1583.91	6000000	610706	Male	Associate	sales	board-games	Single	66000	-46000	2/17/2015
256	39	104594	10/12/2006	он	250/500	1000	1351.1	0	478456	Female	PhD	tech-support	bunaie-iumpina	Single	0	0	1/2/2015

Type of Methods

Naive Bayes

► Binary

Artificial Neural Network

7

► Binary

SAS Naive Bayes Binary Classification

<pre>□proc import out=insurance</pre>	<pre></pre>
<pre>datafile="\\vdi-fileshare01\UEMprofiles\026374944\Desktop\hhh\insurance_claims.csv"</pre>	<pre>table fraud_reported*MaritalStatus/out=MaritalStatus_perc</pre>
dbms=csv replace;	nocum list;
run;	run;
/*SPLITTING DATA INTO 80% TRAINING AND 20% TESTING SETS*/	
Eproc surveyselect data=insurance rate=0.8 seed=177937	<pre> data MaritalStatus_perc; </pre>
<pre>out=insurance outall method=srs;</pre>	set MaritalStatus_perc;
run;	percent=percent/100;
	if fraud_reported='N' and MaritalStatus='Married' then call symput('Married_No', percent);
□ data train (drop=selected);	if fraud_reported='N' and MaritalStatus='Single' then call symput('Single_No', percent);
set insurance;	if fraud_reported='Y' and MaritalStatus='Married' then call symput('Married_Yes', percent);
if selected=1;	if fraud_reported='Y' and MaritalStatus='Single' then call symput('Single_Yes', percent);
run;	run;
∃data test (drop=selected);	<pre> proc freq data=train noprint; </pre>
set insurance;	<pre>table fraud_reported*PoliceReportFiled/out=PoliceReportFiled_perc</pre>
<pre>if selected=0;</pre>	nocum list;
run;	run;
/*COMPUTING PRIOR PROBABILITIES*/	□ data PoliceReportFiled perc;
<pre>Dproc freq data=train noprint;</pre>	<pre>set PoliceReportFiled perc;</pre>
<pre>table fraud_reported/out=priors;</pre>	<pre>percent=percent/100;</pre>
run;	<pre>if fraud reported='N' and PoliceReportFiled='No' then call symput('PoliceReportFiled No No', percent);</pre>
	if fraud reported='N' and PoliceReportFiled='Yes' then call symput('PoliceReportFiled Yes No', percent);
Edata priors;	if fraud reported='Y' and PoliceReportFiled='No' then call symput('PoliceReportFiled No Yes', percent);
set priors;	if fraud reported='Y' and PoliceReportFiled='Yes' then call symput('PoliceReportFiled Yes Yes', percent)
percent=percent/100;	run:
<pre>if fraud_reported='N' then call symput('prior_N', percent);</pre>	
if fraud reported='Y' then call symput('prior Y', percent);	
run;	
	/*COMPUTING MEAN AND STANDARD DEVIATION FOR NUMERICAL PREDICTORS*/
	<pre>Dproc means data=train mean std noprint;</pre>
/*COMPUTING POSTERIOR PROBABILITIES FOR CATEGORICAL PREDICTORS*/	class fraud reported;
<pre>Dproc freq data=train noprint;</pre>	var Age total claim amount;
<pre>table fraud_reported*Sex/out=gender_perc nocum list;</pre>	output out=stats;
run;	run;
∃data gender perc;	
set gender perc;	∃data stats:
percent=percent/100;	set stats;
if fraud reported='N' and Sex='Female' then call symput('Female No', percent);	
if fraud reported='N' and Sex='Male' then call symput('Male No', percent);	<pre>if fraud_reported='N' and _stat_='MEAN' then do;</pre>
if fraud reported='Y' and Sex='Female' then call symput('Female Yes', percent);	
if fraud reported='Y' and Sex='Male' then call symput('Male Yes', percent);	<pre>call symput('Age_mean_no', Age); call symput('total claim amount mean no' total claim amount);</pre>
run:	<pre>call symput('total_claim_amount_mean_no',total_claim_amount); end:</pre>
L MARY	

SAS Naive Bayes Binary Classification

/*COMPUTING POSTERIOR PROBABILITIES FOR TESTING DATA*/

data test:

set test:

if (Sex='Female' and PoliceReportFiled='No') then

do;

pred prob N=&prior N*&Female No*&PoliceReportFiled No No*Married No*1/(2*3.14)*1/(&Age std no*&total claim amount std no) *exp(-(Age-&Age mean no)**2/(2*&Age std no**2)-(total claim amount-&total claim amount mean no)**2/(2*&total claim amount std no**2));

pred prob Y=&prior Y*&Female Yes*&PoliceReportFiled No Yes*Married Yes*1/(2*3.14)*1/(&Age std yes*&total claim amount std yes) *exp(-(Age-&Age_mean_yes)**2/(2*&Age_std_yes**2)-(total_claim_amount-&total_claim_amount_mean_yes)**2/(2*&total_claim_amount_std_yes**2));

end:

if (Sex='Male' and PoliceReportFiled='Yes') then

do;

pred_prob_N=&prior_N*&Male_No*&PoliceReportFiled_Yes_No*Married_No*1/(2*3.14)*1/(&Age_std_no*&total_claim_amount_std_no) *exp(-(Age-&Age mean no)**2/(2*&Age std no**2)-(total claim amount-&total claim amount mean no)**2/(2*&total claim amount std no**2));

pred prob Y=&prior Y*&Male Yes*&PoliceReportFiled Yes Yes*Married Yes*1/(2*3.14)*1/(&Age std yes*&total claim amount std yes) *exp(-(Age-&Age mean yes)**2/(2*&Age std yes**2)-(total claim amount-&total claim amount mean yes)**2/(2*&total claim amount std yes**2));

*exp(-(Age-&Age mean no)**2/(2*&Age std no**2)-(total claim amount-&total claim amount mean no)**2/(2*&total claim amount std no**2));

*exp(-(Age-&Age mean no)**2/(2*&Age std no**2)-(total claim amount-&total claim amount mean no)**2/(2*&total claim amount std no**2));

*exp(-(Age-&Age mean yes)**2/(2*&Age std yes**2)-(total claim amount-&total claim amount mean yes)**2/(2*&total claim amount std yes**2));

9

*exp(-(Age-&Age mean yes)**2/(2*&Age std yes**2)-(total claim amount-&total claim amount mean yes)**2/(2*&total claim amount std yes**2));

pred prob Y=&prior Y*&Female Yes*&PoliceReportFiled Yes Yes*Married Yes*1/(2*3.14)*1/(&Age std yes*&total claim amount std yes)

pred prob N=&prior N*&Male No*&PoliceReportFiled No Yes*Married No*1/(2*3.14)*1/(&Age std no*&total claim amount std no)

pred prob Y=&prior Y*&Male Yes*&PoliceReportFiled No No*Married Yes*1/(2*3.14)*1/(&Age std yes*&total claim amount std yes)

end;

if (Sex='Female' and PoliceReportFiled='Yes') then

if (Sex='Male' and PoliceReportFiled='No') then

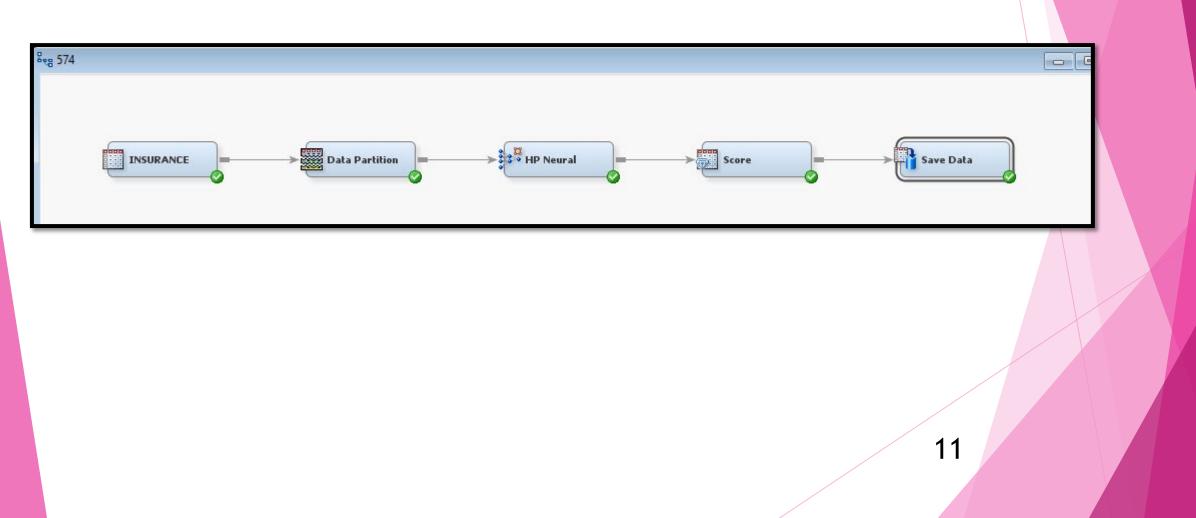
pred prob N=&prior N*&Female No*&PoliceReportFiled Yes No*Married No*1/(2*3.14)*1/(&Age std no*&total claim amount std no)

do:

end;

do:

end;


SAS Naive Bayes Binary Classification

/*COMPUTING PREDICTION ACCURACY*/
<pre> data test; set test; if pred_prob_N < pred_prob_Y then pred_class='Y'; else pred_class='N'; if fraud_reported=pred_class then pred=1; else pred=0; run;</pre>
<pre> proc sql; select mean(pred) as accuracy from test; quit; proc print; </pre>
run;

The	SAS Sys	tem
	accuracy	
	0.725	

10

SAS Code: ANN - Binary

SAS Code: ANN - Binary

Prediction Accuracy

The SAS System

accuracy 0.753333

proc import out=sasuser.insurance	
<pre>datafile="//vdi-fileshare01/UEMprofiles/026374944/Desktop/New folder/insur</pre>	ance_claims.csv
dbms=csv replace;	
run;	
/*COMPUTING PREDICTION ACCURACY*/	
data accuracy;	
<pre>set tmpl.em_save_test;</pre>	
<pre>match=(em classification=em classtarget);</pre>	
run;	
proc sql;	
select mean(match) as accuracy	
from accuracy;	
quit;	

12

R Code Naive Bayes Binary Classification

test.x <- as.matrix(test.complete[, c("Age", "Sex", "MaritalStatus", "PoliceReportFiled", "total_claim_amount")])
test.y <- as.matrix(test.complete[, "fraud_reported"])
#install.packages("caret")
this gives coloumn 2 and 6 are near 0 variance- remove these variables had to correct
library(caret)</pre>

R Code Naive Bayes Binary Classification

library(e1071)

nb.class<- naiveBayes(fraud_reported ~ Age + Sex + MaritalStatus + PoliceReportFiled + total_claim_amount, data=t
rain)</pre>

Make predictions and calculate accuracy

pred.y <- as.numeric(predict(nb.class, test.x)) - 1
match <- ifelse(test.y == pred.y, 1, 0)
accuracy <- mean(match) * 100</pre>

Print accuracy

print(paste("The accuracy of the Naive Bayes classifier is", round(accuracy, digits=2), "%"))

[1] "The accuracy of the Naive Bayes classifier is 75.79 %"

R Code: Artificial Neural Network

```
scale01 <- function(x){
  (x-min(x))/(max(x)-min(x)))</pre>
```

```
insurance_claims2<- insurance_claims2 %>% mutate_all(scale01)
```

```
set.seed(177937)
```

```
sample <- sample(c(TRUE, FALSE), nrow(insurance_claims2), replace=TRUE, prob=c(0.8,0.2))
train<- insurance_claims2[sample,]
test<- insurance_claims2[!sample,]</pre>
```

```
train.x<- data.matrix(train[-6])
train.y<- data.matrix(train[6])
test.x<- data.matrix(test[-6])
test.y<- data.matrix(test[6])</pre>
```

library(neuralnet)

R Code: Artificial Neural Network

fitting ANN with logistic activation fcn

ann.class<- neuralnet(fraud_reported ~ Age + Sex + MaritalStatus + PoliceReportFiled + total_claim_amount, data=train, hidden=3, act.fct="logistic") plot(ann.class)

compute prediction for testing data

```
pred.prob<- predict(ann.class, test.x)[,1]</pre>
```

```
pred.y <- rep(0, length(test.y))</pre>
```

```
match<- c()</pre>
```

```
pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
match[i]<- ifelse(test.y[i]==pred.y[i],1,0)</pre>
```

```
print(paste("ANN accuracy is =", round(mean(match), digits=4)))
```

```
## [1] "ANN accuracy is = 0.726"
```

fitting ANN with logistic activation fcn

ann.class<- neuralnet(fraud_reported ~ Age + Sex + MaritalStatus + PoliceReportFiled + total_claim_amount, data=train, hidden=c(2,3), act.fct="logistic")

plot(ann.class)

R Code: Artificial Neural Network

prediction accuracy for test data

pred.prob<- predict(ann.class, test.x)[,1]</pre>

```
match<- c()
pred.y<- c()
for (i in 1:length(test.y)){
    pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
    match[i]<- ifelse(test.y[i]==pred.y[i],1,0)
}</pre>
```

print(paste("ANN with logistic activation fcn accuracy is =", round(mean(match), digits=4)))

```
## [1] "ANN with logistic activation fcn accuracy is = 0.7163" \,
```

fitting ANN with TANH activation function

ann.class<- neuralnet(fraud_reported ~ Age + Sex + MaritalStatus + PoliceReportFiled + total_claim_amount, data=train, hidden=2, act.fct="tanh") plot(ann.class)

prediction accuracy for test data

pred.prob<- predict(ann.class, test.x)[,1]</pre>

```
match<- c()
pred.y<- c()
for (i in 1:length(test.y)){
    pred.y[i]<- ifelse(pred.prob[i]>0.5,1,0)
    match[i]<- ifelse(test.y[i]==pred.y[i],1,0)</pre>
```

print(paste("ANN with TANH activation function accuracy=", round(mean(match), digits=4)))

[1] "ANN with TANH activation function accuracy= $0.726\,^{"}$

► ANN with TANH accuracy = 72.6%

Summary of Results compared

Naive Bayes-Binary

- ► R Code:
 - **75.79**%
- SAS Code
 - ▶ 72.6%

ANN- Binary

- ► R Code:
 - ANN with TANH accuracy = 72.6%
- SAS Code
 - **75.33**%

Future Work

- I will use this set in a combination with a different set using Logistic regression.
- This is a very simple idea of predicting as there are can involve complex schemes and multiple parties.
- Some common machine learning techniques used in insurance fraud detection include anomaly detection, clustering, and classification. (Need better datasets).

Thank You!

