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Abstract. Recent work has established that digital images of a human
face, collected under various illumination conditions, contain discrimi-
natory information that can be used in classification. In this paper we
demonstrate that sufficient discriminatory information persists at ultra-
low resolution to enable a computer to recognize specific human faces in
settings beyond human capabilities. For instance, we utilized the Haar
wavelet to modify a collection of images to emulate pictures from a 25-
pixel camera. From these modified images, a low-resolution illumination
space was constructed for each individual in the CMU-PIE database.
Each illumination space was then interpreted as a point on a Grassmann
manifold. Classification that exploited the geometry on this manifold
yielded error-free classification rates for this data set. This suggests the
general utility of a low-resolution illumination camera for set-based im-
age recognition problems.

1 Introduction

The face recognition problem has attracted substantial interest in recent years.
As an academic discipline, face recognition has progressed by generating large
galleries of images collected with various experimental protocols and by assess-
ing the efficacy of new algorithms in this context. A number of proposed face
recognition algorithms have been shown to be effective under controlled condi-
tions. However, in the field, where data acquisition is essentially uncontrolled,
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the performance of these algorithms typically degrades. In particular, variations
in the illumination of subjects can significantly reduce the accuracy of even the
best face recognition algorithms.

A traditional approach in the face recognition literature has been to normal-
ize illumination variations out of the problem using techniques such as nonlinear
histogram equalization or image quotient methods [I]. While such approaches
do indeed improve recognition, as demonstrated on the FERET, Yale and PIE
databases, they do not exploit the fact that the response of a given subject to
variation in illumination is idiosyncratic [2] and hence can be used for discrimi-
nation. This work builds on the observation that in the vector space generated
by all possible digital images collected by a digital camera at a fixed resolution,
the images of a fixed, Lambertian object under varying illuminations lie in a con-
vex cone [3] which is well approximated by a relatively low dimensional linear
subspace [45].

In our framework, we associate to a set of images of an individual their linear
span, which is in turn represented, or encoded, by a point on a Grassmann mani-
fold. This approach appears to be useful for the general problem of comparing sets
of images [6]. In the context of face recognition our objective is to compare a set
of images associated with subject 1 to a set of images associated with subject 2 or
to a different set of images of subject 1. The comparison of any two sets of images
is accomplished by constructing a subspace in the linear span of each that opti-
mizes the ability to discriminate between the sets. As described in [2], a sequence
of nested subspaces may be constructed for this purpose using principal vectors
computed to reveal the geometric relationship between the linear spans of each
subject. This approach provides an immediate pseudo-metric for set-to-set com-
parison of images. In an application to the images in the CMU-PIE Database [7]
and Yale Face Database B [4], we have previously established that the data are
Grassmann separable [2], i.e., when distances are computed between sets of im-
ages using their encoding as points on an appropriately determined Grassmann
manifold the subjects are all correctly identified.

The CMU-PIE database consists of images of 67 individuals. While the Grass-
mann separability of a database of this size is a significant, positive result, it is
important to understand the general robustness of this approach. For example,
the application of the methodology to a larger data set is of critical interest. In the
absence of such data, however, we propose to explore a related question: as we re-
duce the effective resolution of the images of the 67 individuals which make up the
CMU-PIE database, does Grassmann separability persist? The use of multireso-
lution analysis to artificially reduce resolution introduces another form of nested
approximation into the problem that is distinct from that described above.

We observe that facial imagery at ultra low resolutions is typically not rec-
ognizable or classifiable by human operators. Thus, if Grassmann separability
persists at ultra low resolution, we can envision large private databases of facial
imagery, stored at a resolution that is sufficiently low to prevent recognition
by a human operator yet sufficiently high to enable machine recognition and
classification via the Grassmann methods described in Section
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Accordingly, the purpose of this paper is to explore the idiosyncratic nature of
digital images of a face under variable illumination conditions at extremely low
resolutions. In Section [2] we discuss the notion of classification on a Grassmann
variety and a natural pseudo-metric that arises in the context of Schubert vari-
eties. In Section Bl we extend these ideas to the context of a sequence of nested
subspaces generated by a multiresolution analysis. Results of this approach ap-
plied to the CMU-PIE database are presented in Section [ We contrast our
approach with other methods in Section [l and discuss future research directions
in Section [Gl

2 Classification on Grassmannians

The general approach to the pattern classification problem is to compare labeled
instances of data to new, unlabeled exemplars. Implementation in practice de-
pends on the nature of the data and the method by which features are extracted
from the data and used to create a representation optimized for classification.

We consider the case that an observation of a pattern produces a set of dig-
ital images at some resolution. This consideration is a practical one, since the
accuracy of a recognition scheme that uses a single input image is significantly
reduced when images are subject to variations, such as occlusion and illumina-
tion [8]. Now, the linear span of the images is a vector subspace of the space of
all possible images at the given resolution, and thus, corresponds to a point on
a Grassmann manifold.

More precisely, let k (generally independent) images of a given subject be
grouped together to form a data matrix X with each image stored as a column
of X. If the column space of X, R(X), has rank k and if n denotes the image res-
olution, then R(X) is a k-dimensional vector subspace of R™, which is a point
on the Grassmann manifold G(k,n). See Fig. [1l for a graphical illustration of
this correspondence. Specifically, the real Grassmannian (Grassmann manifold),
G(k,n), parameterizes k-dimensional vector subspaces of the n-dimensional vec-
tor space R™. Naturally, this parameter space is suitable for subspace-based
algorithms. For example, the Grassmann manifold is used in [9] when searching
for a geometrically invariant subspace of a matrix under full rank updates. An
optimization over the Grassmann manifold is proposed in [I0] to solve a general
object recognition problem. In the case of face recognition, by realizing sets of
images as points on the Grassmann manifold, we can exploit the geometries im-
posed by individual metrics (drawn from a large class of metrics) in computing
distances between these sets of images.

With respect to the natural structure of a Riemannian manifold that the
Grassmannian inherits as a quotient space of the orthogonal group, the geodesic
distance between two points A, B € G(k,n) (i.e., two k-dimensional subspaces
of R™) is given by di(A,B) = ||(01,...,0k)|l2, where 8; < 03 < --- < 6 are
the principal angles between the subspaces A and B. The principal angles are
readily computed using an SVD-based algorithm [I1].
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Fig. 1. Illustration of the Grassmann method, where each set of images may be viewed
as a point on the Grassmann manifold by computing an orthonormal basis associated
with the set

Principal angles between subspaces are defined regardless of the dimensions of
the subspaces. Thus, inspired by the Riemannian geometry of the Grassmannian,
we may define, for any vector subspaces A, B of R",

de(A, B) = [|(01, . ..,00)]|2,

for any ¢ < min{dim A,dim B}. While d; is not, strictly speaking, a metric
(for example, if dim AN B > £, then dy(A, B) = 0), it nevertheless provides an
efficient and useful tool for analyzing configurations in Ug>,G(k,n). For points
on a fixed Grassmannian, G(k,n), the geometry driving these distance measures
is captured by a type of Schubert variety 2,(W) C G(k,n). More specifically,
let W be a subspace of R™, then we define

(W) = {E € G(k,n)| dim(ENW) > (}.

With this notation, dy| (A, B) simply measures the geodesic distance between A
and £2;(B), i.e. d(4, 2¢(B)) = min{dx(4,C)|C € 2,(B)} (it is worth noting
that under this interpretation, d¢(A4, B) = d¢(B, A)).

3 Resolution Reduction

3.1 Multiresolution Analysis and the Nested Grassmannians

Multiresolution analysis (MRA) works by projecting data in a space V onto a
sequence of nested subspaces

"'CVj+1CVjCVj71C"'CV0:V.

The subspaces V; represent the data at decreasing resolutions and are called scal-
ing subspaces or approximation subspaces. The orthogonal complements W; to
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V; in V;_; are the wavelet subspaces and encapsulate the error of approximation
at each level of decreased resolution. For each j, we have an isomorphism

&V SV e W

Let n7: V;@® W, — V; denote projection onto the first factor and let ¢/ = 77 0 ¢/
(thus 97 : V;_; — V;). This single level of subspace decomposition is represented
by the commutative diagram in Fig. 2l(a).

Let G(k, V') denote the Grassmannian of k-dimensional subspaces of a vector
space V. Suppose that V,V’ are vector spaces, and that f: V — V' is a linear
map. Let ker(f) denote the kernel of f, let dim(A) denote the dimension of the
vector space A and let

Gk, V) ={ACV|dim(A) =k and ANker(f)=0}.

If &+ dimker(f) < dimV, then G(k,V)° is a dense open subset of G(k,V)
and almost all points in G(k, V) are in G(k,V)°. Now if A Nker(f) = 0, then
dim f(A) = dim A, so f induces a map

2 Gk, V) — Gk, V).

Furthermore, if f is surjective, then so is f°. The linear maps of the MRA shown
in (a) of Fig. @l thus induce the maps between Grassmannians shown in (b) of
the same figure.

Finally, we observe that if A, B are vector subspaces of V', then dim(ANB) =
dim(f(A) N f(B)) if and only if (A 4+ B) N ker(f) = 0. In particular, when
(A+ B)Nker(f) =0 and ¢ < min{dim A, dim B}, then d¢(A, B) = 0 if and only
if do(£(A), f(B)) = 0.

From this vantage point, we consider the space spanned by a linearly inde-
pendent set of k images in their original space on the one hand, and the space
spanned in their reduced resolution projections on the other hand, as points
on corresponding Grassmann manifolds. Distances between pairs of sets of k
linearly independent images or their low-resolution emulations can then be com-
puted using the pseudo-metrics dy on these Grassmann manifolds. The preced-
ing observation suggests the possibility that for resolution-reducing projections,
spaces which were separable by d, remain separable after resolution reduction.
Of course, taken to an extreme, this statement can no longer hold true. It is
therefore of interest to understand the point at which separability fails.

3.2 Image Resolution Reduction

In a 2-dimensional Discrete Wavelet Transform (DWT), columns and rows of
an image I each undergo a 1-dimensional wavelet transform. After a single level
of a 2-dimensional DWT on an image I of size m-by-n, one obtains four sub-
images of dimension [ ]-by-[%]. If we consider each row and column of I as a
1-dimensional signal, then the approzimation component of I is obtained by a
low-pass filter on the columns then a low-pass filter on the rows and sampled
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Fig. 2. (a) Projection maps between scaling and wavelet subspaces for a single level
of wavelet decomposition. (b) Projection maps between nested Grassmannians for a
single level of decomposition.

on a dyadic grid. The other 3 sub-images are obtained in a similar fashion and
collectively, they are called the detail component of I. The approximation com-
ponent of an image after a single level of wavelet decomposition with the Haar
wavelet is equivalent to averaging the columns, then the rows. See Fig. [l for
an illustration of the sub-images obtained from a single level of Haar wavelet
analysis.

To use wavelets to compress a signal, we sample the approximation and detail
components on a dyadic grid. That is, keeping only one out of two wavelet
coeflicients at each step of the analysis. The approximation component of the
signal, A;, after j iterations of decomposition and down-sampling, will serve as
the same image in level j with resolution [Z}]-by-[Z5].

In the subsequent discussions, we present results obtained by using the ap-
prozimation subspaces. However, similar results obtained by using the wavelet
subspaces are also observed.

(b) LL (c) HL (d) LH (e) HH

Fig. 3. An illustration of the sub-images from a single level of Haar wavelet analysis on
an image in CMU-PIE. From left to right: original image, approximation, horizontal,
vertical, and diagonal detail.

(a) Original

4 Results: A 25-Pixel Camera

The experiment presented here follows the protocols set out in [2], where it was
established that CMU-PIE is Grassmann separable. This means that using one of
the distances dy on the Grassmannian, the distance between an estimated illumi-
nation space of a subject and another estimated illumination space of the same
subject is always less than the distance to an estimated illumination space of
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any different subject. In this new experiment we address the question of whether
this idiosyncratic nature of the illumination spaces persists at significantly re-
duced resolutions. As described below, we empirically test this hypothesis by
calculating distances between pairs of scaling subspaces.

The PIE database consists of digital imagery of 67 people under different
poses, illumination conditions, and expressions. The work presented here con-
cerns only illumination variations, thus only frontal images are used. For each of
the 67 subjects in the PIE database, 21 facial images were taken under lighting
from distinct point light sources, both with ambient lights on and off. The re-
sults of the experiments performed on the ambient lights off data is summarized
in Fig. @ The results obtained by running the same experiment on illumina-
tion data collected under the presence of ambient lighting were not significantly
different.

For each of the 67 subjects, we randomly select two disjoint sets of 10 images to
produce two 10-dimensional estimates of the illumination space for the subject.
Two estimated spaces for the same subject are called matching subspaces, while
estimated subspaces for two distinct subjects are called non-matching subspaces.
The process of random selection is repeated 10 times to generate a total of 670
matching subspaces and 44,220 non-matching subspaces. We mathematically re-
duce the resolution of the images using the Haar wavelet, effectively emulating
a camera with a reduced number of pixels at each step. As seen in Fig. B varia-
tions in illumination appear to be retained at each level of resolution, suggesting
that the idiosyncratic nature of the illumination subspaces might be preserved.
At the fifth level of the MRA the data corresponds to that which would have
been captured by a camera with 5 x 5 pixels. We observe that at this resolution
the human eye can no longer match an image with its subject.

The separability of CMU-PIE at ultra low resolution is verified by comparing
the distances between the matching to the non-matching subspaces as points
on a Grassmann manifold. When the largest distance between any two match-
ing subspaces is less than the smallest distance between any two non-matching
subspaces, the data is called Grassmann separable. This phenomenon can be
observed in Fig. [4 The three lines of the box in the box whisker plot shown
in Fig. [4 represent the lowest quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of
the rest of the data and outliers are data with values beyond the ends of the
whiskers.

Using dy, i.e., a distance based on only one principal angle, we observe a signif-
icant separation gap between the largest and smallest distance of the matching
and non-matching subspaces throughout all levels of MRA. Specifically, the sepa-
ration gap between matching and non-matching subspaces is approximately 16°,
18°,17°,14°, 8°, and 0.17° when subspaces are realized as points in G(10, 22080),
G(10,5520), G(10,1400), G(10, 360), G(10,90), and G(10, 25), respectively. Note
that the non-decreasing trend of the separation gap is due to the random selec-
tion of the illumination subspaces.
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Fig. 4. Box whisker plot of the minimal principal angles of the matching and non-
matching subspaces. Left to right: original (resolution 160x138), level 1 Haar wavelet
approximation (80x69), level 2 (40x35), level 3 (20x18), level 4 (10x9), level 5 (5x5).
Perfect separation of the matching and non-matching subspaces is observed throughout
all levels of MRA.

As expected, the separation gap given by the minimal principal angle between
the matching and non-matching subspaces decreases as we reduce resolution, but
never to the level where points on the Grassmann manifold are misclassified.
In other words, individuals can be recognized at ultra-low resolutions provided
they are represented by multiple image sets taken under a variety of illumination
conditions.

It is curious to see if similar outcomes can be observed when using unstruc-
tured projections, e.g., random projections, to embed subject illumination sub-
spaces into spaces of significantly reduced dimensions. To test this, we repeated

Fig. 5. Top to bottom: 4 distinct illumination images of subjects 04006 (a) and 04007
(b) in CMU-PIE; level 1 to level 5 approximation obtained from applying 2D discrete
Haar wavelet transform to the top row
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the experiments described above in this new setting. Subject illumination sub-
spaces in their original level of resolution were projected onto low dimensional
spaces via randomly determined linear transformations. Error statistics were
collected by repeating the experiment 100 times. Perfect separation between
matching and non-matching subspaces occurred when subject illumination sub-
spaces were projected onto random 35-dimensional subspaces. This validates the
use of digital images at ultra low resolution and emphasizes the importance of
illumination variations in the problem of face recognition. Furthermore, while
unstructured projections perform surprisingly well in the retention of idiosyn-
cratic information, structured projections that exploit similarities of neighboring
pixels allow perfect recognition results at even lower resolutions.

We remark that the idiosyncratic nature of the illumination subspaces can
be found not only in the scaling subspaces, but also in the wavelet subspaces.
Indeed, we observed perfect separation using the minimal principal angle in
almost all scales of the wavelet subspaces.

5 Related Work

A variety of studies consider the roles of data resolution and face recognition,
including [T2IT3T4IT5T6]. A common feature of these studies is the practice of
using single to single image comparison in the recognition stage (with the ex-
ception of [I6]). Among the techniques used to train the algorithms are PCA,
LDA, ICA, Neural Network, and Radial Basis Functions. Some of the classifiers
used are correlation, similarity score, nearest neighbor, neural network, tangent
distance, and multiresolution tangent distance. If variation in illumination is
present in the data set, it is removed by either histogram equalization [I7] or
morphological nonlinear filtering [18]. Except in [16], the variation of illumina-
tion was treated as noise and eliminated in the preprocessing stage before the
classification takes place.

In a more related study, Vasconcelos and Lippman proposed the use of trans-
formation invariant tangent distance embedded in the multiresolution frame-
work [16]. Their method, based on the (2-sided) tangent distance between man-
ifolds, is referred to as the multiresolution tangent distance (MRTD) and is
similar to our approach in that it requires a set-to-set image comparison. It is
also postulated that the use of a multiresolution framework preserves the global
minima that are needed in the minimization problems associated with com-
puting tangent distances. The results of [16], however, are that when the only
variation in the data is illumination, the performance of MRTD is inferior to
that of the normal tangent distance and Euclidean distance. Hence, it appears
that the framework of [I6] does not sufficiently detect the idiosyncratic nature
of illumination at low resolutions.

In summary, we have presented an algorithm for classification of image sets that
requires no training and retains its high performance rates even at extremely low
resolution. To our knowledge, no other algorithm has claimed to have achieved
perfect separability of the CMU-PIE database at ultra low resolution.
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6 Discussion

We have shown that a mathematically emulated ultra low-resolution illumination
space is sufficient to classify the CMU-PIE database when a data point is a set
of images under varying illuminations, represented by a point on a Grassmann
manifold. We assert that this is only possible because the idiosyncratic nature
of the response of a face to varying illumination, as captured in digital images,
persists at ultra low resolutions. This is perhaps not so surprising given that
the configuration space of a 25-pixel camera consists of 2562° different images
and we are comparing only 67 subjects using some 20 total instances of illumi-
nation. The representation space is very large compared to the amount of data
being stored. Furthermore, the reduction of resolution that was utilized takes
advantage of similarities of neighboring pixels. The algorithm introduced here is
computationally fast and can be implemented efficiently. In fact, on a 2.8GHz
AMD Opteron processor, it takes approximately 0.000218 seconds to compute
the distance between a pair of 25-pixel 10-dimensional illumination subspaces.

The work presented here provides a blueprint for a low-resolution illumination
camera to capture images and a framework in which to match them with low-
resolution sets in a database. Future work will focus on evaluating this approach
on a much larger data set that contains more subjects and more variations. The
Grassmann method has shown promising results in a variety of face recognition
problems [6IT9)2], we intend to examine the effect of resolution reduction on
the accuracy of the algorithm with a range of variations, such as viewpoint and
expressions.
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