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Abstract

If an oscillating force is applied to an inverted pendulum it is possible to keep it completely vertical,
that is 7/2 degrees from the surface the pendulum lies on, with some stability depending on the
frequency it oscillates at. This paper describes how and why this stability occurs for a particular

inverted pendulum created by Mr. Jahan Sarashid.

1 Introduction

This paper is completely theocrical, except for a
small calculation to test for approximatc similar-
ities with what has been observed. That is this
paper does not try to summarize large data sets
but tries to create an intuitively understandable
model for the phenomenon at hand. Approaching
this problem in a completely theoretical fashion is
interesting and possibly rewarding in that the math
used in explaining this phenomenon may show how
this phenomenon relates to other systems that are
completely different on the surface but are funda-
mentally similar.

A picture of the inverted pendulum under investi-
gation is found in Figure 1. For this paper the sim-
plification is made that the pendulum has a mass m
at the end of a massless stick of length /. This sim-
plification is acceptable for a rough approximation
but may need to be refined for future calculations.
The rod is attached to a vertically oscillating table;
the position of which is given by A cos(w,t), again a
simplification is made that this source frequency,ws,
is uniform. A mechanical description of the simpli-
fied pendulum is found in Figure 2 1.

Thus the task at hand is to show that if w, is
large enough, the pendulum will not fall over, and
to find what big enough means. This paper is di-
vided into 3 sections. The first section is this in-
troduction. The sccond deals with the math model
and the third tries to sum up the findings of the pre-
vious section and considers where thought should
be put next to understand the phenomenon.

LThis figure was inspired by the first page of [1]

Figure 1: picture of Mr. Jahan Sarashid’s inverted
pendulum

2 Developing the Math Model

This section develops a simple but robust math
model for modeling the behavior of the inverted
pendulum.

2.1 The motion of the forcing agent

To understand the motion of the inverted pendu-
lum it is quite appropriate to begin with getting a
handle on the force that creates the oscillations in
the first place. So using the Figure 2, geometry,
and a little differentiation the motion of this body
is gleaned in this section.?

2The remaining sections except for the Discussion are
mainly your, Dr. 'Lahsiri’s, work [1] put into my own words
and equations. Some parts infact taken verbatim from your
work. As such I hope I have correctly understood your in-
structions as I can claim almost no thought in this paper to
be my own.




2 DEVELOPING THE MATH MODEL
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Figure 2: mechanical diagram of inverted pendu-
lum.

y=y+y
1y = Acosa
12 = Lcos ¢ =

y = Acosa+ Lcos. (1)
Also from Figure 2:

qin¢—é%i11(x=>cm2¢— 1~—3s‘i12

‘ = 7 sina = cos” ¢ = 73 sin” @

substituting the above into (1):

A2
y=Acosa+L l—z—z-sinza.

This fits into the intuitive definition of y as:

@)

yla=0)=L+ A and,

yla=m)=L—-A

which is required observing Figure 2.

¥
|

2.2 Finding the velocity and :?éceler-
ation of point, P with respect to
the center of the disk.

3 If it is assumed that 7 < 1 then (2) can be ex-
panded binomially and the 2nd term approximation
is good:
1 A2 .2
y~ Acosa+ L(1 - 572 Sin )
2

=Acosa+ L — E—L-—sinza

From the Figure:
o = wgt =

As it is assumed that w, is a constant this implies
that y = y(¢).
142,
y(t) =~ Acos(wyt) + L — 5 s (wst) (3)

Taking the derivative of y(t) with respect to ¢ pro-
duces:

) . wsA? 4
vy = §(t) & —Aw, sin(wst) — —E-I.J-Sln(%st) (4)

ws2A?

cos(2wst)
(5)
y is the vertical position of point P in relation to
point 0 in Figure 2. The equations just solved are
the necessary vertical relations between the posi-
tion of the rotating body on the wheel that drives
the pendulum and point P, the point at which the

pendulum is attached. There is now cnough work
done to analyze the motion of the pendulum’s rod.

ay = §i(t) = —Aw,” cos(wst) —

2.3 Motion of the Inverted Pendu-
lum

A method that works well for many systems, this
one included, is using Lagrange’s equations of mo-
tion. First the Lagrange,L is defined as the total
kinetic cnergy of a system minus the total potential
encrgy of the system:

L=T-V 6)

3You developed the pendulum’s velocity for both 0 and
0/ however for the task at hand only the first is nccossary.
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and the equations of motion themselves are:
(7)

where ¢; represent indpendent generalized coordi-
nates. For the purposes at hand it will be shown
that (g1, 4z, ...) is simply (6).

Now the total kinetic energy of the system is:

T = %m(i’Q +7?) (8)

and the total potential energy of the sytsem, V is:

V =mgY (9)

Tt is useful to get an intuitive feel for the move-
ment of the pendulum. As such here is a simplified
version of Figure 2.

- et T Rl ok =

Figure 3: Simple diagram of inverted pendulum’s
motion.

From Figure 3 it is apparent that:

Y =y +1lcosd (10)

3
using (4) this implies: [
. ) wsA? T
Y &~ — Aw, sin(wst) — 5T sin(2wst) + (—! sin 66)
(11)

and the square is equal to:*
V2 22 Aw, sin (w,t) Isin (8 (1)) 8 (t)
. 2
+ A%w,2 (sin (wyt))? + 12 (sin (6 (£)))? (9 (t))

+EEm@@) (00)
2wy A2 sin (wst) cos (wst) Isin (8 (£)) 6 (¢)
* L
4 2 A3w,? (sin (cz,,t))2 cos (wst)
N w,2 A* (sin (w,t))? (cos (wst))’
LZ

(12)

However as this paper is only interested in rough
approximations and as L > A the last three terms
are very small (for small values of w,) compared to
the other terms. Thus this paper restricts itself to
small values of w, and the last three terms will be
discarded. That is:

V2 ~2 Aw, sin (w,t) Isin (6 () 8 (t)
b A%, (s (@)’ + P (im0 0) (60)

+2@EmEO) (00)
(13)

4] obtained the square using the following Maple code-
although it would have been easy enBugh to do it by hand
it saves some time and gives me a little experience:
>v[y] :=-A*omega [s] *sin(omega [s] *t)

-omega [s]*A2%sin (2%omega [s]*t)/(2*L)
-1*sin(theta(t))*diff (gheta(t) )3

— Aws sin (wet) — 1/2 222 S8CweD) _ 15in (6 (1)) 406 (2)
> collect(expand(v[yl2),L);

2 Aws sin (wst) Isin (8 (£)) gt-e 0

+ A2w,? (sin (wst))? + 12 (sin (6 ®)))? -(%0 @®) ’
d 2

+1%(sin (@) 0()

+ 2 ws A2 sin (wst) cos (wst) Lsin (8 (2)) %0 (£)2 + Aws? (sin (wst))? cos (wst)
L

ws2 A% (sin (wst))? (cos (wst))?
L2

+
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in the z direction:

z =1sinf = & = lcos 6.

(14)
So that: .

i? = 1% cos® 06° (15)
Note that the last term of Y2 combines with &2 So
the kinetic energy is:

T z%m(ﬁé? + 2 Aw, sin (wst) Isin (8 (£)) 6 ()
+ A%, (sin w,t))” + 2 (sin 0 ) (§9) )
(16)

Using (3) and (10), and making the previous ap-
proximation that because L > A the term with L
in the denominator can be discarded, the potential
energy for this system is:

V = mg(Acoswst + L+ lcos®) (17)
So

L= [%m(ﬂé2 + 2 Aw, sin (w,t) Isin (0 (£)) 6 (t)

+ A%, (sin (wit))? + 12 (sin (0 (1)))? (6 ®)]
— mg(Acoswst + 1+ Lcosf)
(18)

As can be seen by this equation the only thing £
is a function of is # and t therefore the Lagrange
equation is:

Ef% ~ 55 = 0. (19)
Now,
aoc _
o
d, . . .
= ml-(-ﬁ(w + Aw, sin(0) sin(wst))  (20)
= ml(f + Aw, cos(8)8 sin(wst)
+ Aw? cos(wst) sin(f)
and
oL ; . .
50 = mAw,lf cos @ sinwt + mgl sin @ (21)

So that the equation of motion is:
ml(f + Aw, cos()thetasin(wst)+
Aw? cos(wst) sin(6) — mAw,lf cos O sin wt

+mglsing =0

4
which is: ‘3‘,
126 + Aw,? sin f cos(w,t) — gsinf =0 (22)

Letting 7 = w,t and letting wp = g/l the final ODE
is obtained with respect to 7:

6+ Aflws®sin@cos T — (%0-)2 sind=0 (23)
8

so the equation of motion for this problem is: Using
the above equation of motion two plots-of the angle
# of the rod in time have been plotted in Figure 4
and 5. Figure 4 represents a stable- i.e. w, is large
enough- situation, and Figure 5 depicts the nature
of the pendulum’s movement if w, is too small too
remain constantly vertical.

wm
I O T TR -

s
1

thet%

i L i L i L il
£

N
1

ERERERERRER

[|Illllllllllllllll|lllIllllllllllfl

0 2 4 6 8 10 12
t

Figure 4: Stable Theoretical Inverted Pendulum
with | = .20m,g = g.sg,A = 0.0013m,w =
200H z * rad ’
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Figure 5: Unstable Theoretical Inverted Pendulum
with [ = .20m,g = 9,85"’;,/1 = 0.0013m,w = 20
Hzrad

3 Discussion

With a little work it has been shown that an in-
verted pendulum can be modeled reasonbly well
with not too much difficulty. It is of interest to
note the similarity between the simplified inverted
pendulum’s ODE and that of the damped pendu-
lum:

milf + 76 + mgsinf = 0. (24)

It is understandable as one can think of Earth’s
gravitational field operating in just the oppo-
site way for both pendulums but with the same
strength.

The approximations and simplifications that
were made to create a simple enough model to work
with is not totally acceptable for at large values of
w, the terms neglected will have an impact. Also
while L > A,L is not of the magnitude larger that
a two term binomial approximation for y, is totally
acceptable and a better approximation should pos-
sibly be taken (depending on the needs of the exper-
imentor). With the usc of a computer and a sym-
bolic calculator (such as Mathematica or Maple) it
seems that a more precise estimate of an inverted
pendulum’s behavior is relatively straight forward

and possible with a little thought and work This
will be left to another paper and mest probably
another person altogether however.

»Thank you”s and Acknowledg-
ments

Thank you Dr. Jorgensen for making what is im-
perfect more perfect, i.e. reading and critiquing
this paper. Thank you Dr. Tahsiri for this chance
to consider what happens when you flip the world
- or at least part of it- upside down.
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The goals of this course are for you to become more adept atapplying
mathematical tools to physics problems and to be better prepared for
other upper or sraduate division courses and the real world. One of
the tools we will spend quite & bit of time on is Mathematica powerful
software that cansolve practically any math problem provided you
can express it correctly (it is quite demanding) and interpret the results
(they are not always obvious). To make this easier we will meetina
computer lab, We will meet every Tues and Thurs during lecture.

Texthook : There is no required text for this course. Any good advanced
book on mathematical physics will be adequate. Appropriate texts
are by Mathew and Walker and Arfken.

Required Text: Mathematica, Schaum's Outlines, $16.95




L= %m[ﬁe’z + A*w,” sin(w,1)

(16)

+2Aw,10sin(8) sin(w,?)]
—mg[ A cos(w,t) + I cos(0)]

4. Equation of Motion

We are now ready to obtain the equation of motion
for the inverted pendulum system. The Lagrange’s
equation’ is written as,

don oL a7
dt 06~ 00

We evaluate Eq.17 term by term. The first term is
given by,

(=)= %m[leé +2A4w 16 cos(0) sin(w, () (18)

+ 24w, sin(8) cos(w,t)
The second term is given by,

aL (19)

20 = mAw 6 cos(8)sin(w,t) + mgl sin(6)

Putting Eq.18 and Eq.19 together, the Lagrange’s
equation becomes,

(20)

d’o 2 .
i +[Aw,” cos(w,t)— glsin(6) =0

/
This is the equation of motion for our 2-
dimensional inverted pendulum. This equation has
no analytical result. However, it can be solved
numerically using Mathematica. If we specify
some values to 4, /, g, and @ such that the motion
is stable (stability analysis is in the next session),
we are able to obtain a numerical solution to
Eq.20. Figure 3 shows a plot to the solution.

Since Eq.20 gives no analytical result, we will
perform a series of substitution and approximation
to reduce Eq.20 to an analytically solvable
equation.

3. The formulation of the Lagrange’s equation can be found in
Goldstein

If we define

T=wt 2 1’)
and !
o = |E - 422)

] A

Absorbing Eq.21 and Eq.22, and after a little
arrangement, Eq.20 becomes,

d*e 4
[_

. 23)
dr* 1

2
cos(z) — -aiz]sin(e) =0
o

5

If we restrict  to be small, we can make a small
angle approximation sin(g) = 6, then Eq.23
becomes,

d*e
dr?

- (24)

A w,’
+[~cos(r)-—510 =0
/ o,

It can be further simplified by replacing cos(7) with
its time average. Since the time average of cos’(7) is
5, then,

[c0s(?)]. =% (25)

Thus, Eq.24 becomes,

a6 A4 (26)
2L Poe=0
dr? +[\/§l ) 7

s

It is a second order linear differential equation with
constant coefficients, which has the same form as
Eq.1.

o[t]

‘O'j;v \/ ! \/

Figure 3 Plot of a stable solution to Eq.20 by Mathematica




5. Stability Analysis

In this session, we want to examine the stability of
the inverted pendulum by studying the driving
frequency, @, The stability of the solution to
Eq.26 is summarized below:

(i) Stable Simple Harmonic Motion

% ~ Z_Oz >0 (27)
or

0¥, (28)
(ii) Unstable (falling)
or

ot Py (30)

So with Eq.22, the critical driven frequency can
now be expressed as,

. VU, g 31)

0 =——w, =—=>

A A

One of the parameters that the critical driving
frequency depends on is the radius of the rotating
wheel, 4. As shown in the Eq.31, w’ and 4 are
inversely proportional. For instance, a larger disk,
thus a larger 4, requires a lower rotating frequency
to keep the inverted pendulum stable. However, a
larger A requires a longer connecting rod (larger
L), since we assumed that L>>4 when we made
the claim that the motion point P is a simple
harmonic motion, as in Eq.7.

The other parameter is the acceleration due to
gravity, g. @, and g have a proportional relation.
With, say, a higher g, a higher driving frequency is
required to keep the motion stable, or in other
words, to keep the mass from falling off the top.

Acknowledgment is made to Dr. Tahsiri the
advisor to this paper. Acknowledgment is also
made to Mr. Jahan Sarashid who made the
inverted pendulum device (Figure 1). Special
thank to Dr. George who spend his time to review
this paper.




Two-Dimensional Inverted Pendulum
: Wai-Ming Tam
Department of Physics and Astronomy, California State University, Long Beach

1. Introduction

A regular ideal string-mass pendulum is well
studied. Ignoring the force due to air friction, the
only force acting on the string-mass system is the
gravitational force on the mass. Newton’s equation
then reads,

2
d f+§sin9=0 (1)
dt !

where 0 is the angle between the string and the
vertical, g is the acceleration due to gravitation,
and / is the length of the string.

The small angle approximation solution, with sin@
= 6, to this equation is,

0(t) = 6, cos(a,) (2
with
w, =&

i

The idea of Inverted Pendulum was invented by
Hooshang Tahsiri at UC Irvine and the mechanical
device was made by Jahan Sarashid, as shown in
Figure 1. In the following discussion, we will
investigate the theoretical foundations underlying
the motion of an inverted pendulum. We will
restrict ourselves in the 2-dimensional case.

2. Inverted Pendulum — The Basic Idea

There are two forces acting on the rod-mass
system of an inverted pendulum (assume the mass
of the rod is negligible). (1) The gravitational
force acting on the mass; (2) A vertical driving
force acting on the lower end of the rod, point P in
Figure 2. The gravitational force is simply a
downward constant force. We will not discuss it
here.

For the vertical driving force, we have no idea on
the magnitude of the force. However, we can trace
out the motion of the lower end of the rod (point
P). P is connected to a fixed point Q on the rim of
the rotating wheel with radius 4 by a rigid
massless rod. The wheel is rotated at a constant

angular frequency, w,, by an electrical motor. Since
the motion of P is restricted in, "Ehé vertical
dimension, as we will see in the next section, it is
approximately a simple harmonic motion, given by,

y,(t) = Acosa = Acos(w,1) (3)

Our aim is to find an analytical expression for the
driving angular frequency, @, that can keep the
system stable, or not falling.

Figure 1 The mechanical device made by Jahan Sarashid
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Figure 2 A schematic diagram of the inverted pendulum




3. Energy (Lagrangian) Analysis

Since finding an expression for the vertical force is
not easy, instead of using Newton’s equation,
which emphasizes on the net force acting on the
system, we will obtain the equation of motion by
writing the Lagrangian of the system, which
describes the system from the energy stand point
of view. The Lagrangian is given by,

L=T-V “)

where T is the total kinetic energy and V is the
total potential energy in our system.

Since ¥ and T depend on the position of the mass
(recall that the rod is massless) and its first
derivative, respectively, we need to find
expressions for them before we can write 7"and V
and thus the Lagrangian.

(1) Vertical Position
The vertical position is given by,

y@)=y,()+lcosb (5)

where y,(), the position of point P, is given by
Eq.3.

Let us now verify Eq.3. P is connected, by a rigid
rod, to a fixed point Q on the rim of the wheel
rotating at a constant angular frequency, ;. So we
know that the motion of P is restricted by the
motion of Q. It has been studied that for a point
moving on a circle with constant velocity, the
Cartesian components (in our case, the vertical
component) of its position is undergoing simple
harmonic motion, with an angular frequency
equals that of the circular motion of the point®. So,
with y, = 0 at the center of the wheel,

y,(t) = Acosa = Acos(a,!) (6)

If we keep the connecting rod to be vertical all the
time and let point P to move in a circle, the motion
of P would be exactly the same as the motion of

Q.

1. Discussion on the Lagrangian can be found in any undergraduate
Classical Mechanics textbook. For instance, Goldstein.
2. Any introductory college Physics textbook. For instance, Young.

However, since the motion of P is restricted to be
pure vertical, y, # y,. Nonetheless, y, is a good
approximation to y, if L >> A. Then,

¥, =y,(t)= Acos(®,0) (.
And the vertical position of the mass is then given
by, :

(1) = Acos(e,f)+ 1 cos 0 (3
Consequently, its first derivative is given by,

Y s o4l )]
i (w,Asin(w,t) +Isin — )

(2) Horizontal Position

The horizontal position is given by,

(10)

x(t)=1sinf

Thus, its first derivative is,
o lcos@ a0 (1D
dt dt

(3) Kinetic Energy
We are now ready to write the Lagrangian of the
system. The total kinetic energy is given by,

= Lo @y + @y
T=om(E) + D7)

(12)

Substitute Eq.9 and Eq.11, it becomes,

(13)

T= —;-m[lzé2 + A0, sin*(w,t)

+2A4w,10sin(6)sin(w,1)] ~

(4) Potential Energy
The potential energy is given by,

(14)

V =mgy(r)
Substitute Eq.8, it becomes,
(15)

V =mg[Acos(w,t) +1cos()]

Putting Eq.13 and Eq.15 together, we obtain the
Lagrangian,




