Physics 3C

Quiz 1

Name:

ID:

TA:

Problem 1:

The system below is formed with two circular pipes of diameters D1 and D2 connected together. A mass M sits on a piston at height H1 so that fluid of density ρ is just level with the top of the pipe at H2. Solve for the Mass in terms of ρ , H1, H2, D1 and D2. Assume that the piston is massless.

Using Bernoulli's equation

at (1)
$$P_{ATm} + M_0 + pg H_1 = Constant$$

at (2) $P_{ATm} + pg H_2 = Constant$

so $P_{ATm} + pg H_1 = pg H_2 + pg H_2$

$$P_{ATm} + pg H_2 = Pg H_2 + pg H_3$$

$$P_{ATm} + pg H_1 = pg H_2 + pg H_2$$

$$P_{ATm} + pg H_2 = Pg H_2 + pg H_3$$

$$P_{ATm} + pg H_1 = pg H_2 + pg H_2$$

$$P_{ATm} + pg H_2 + pg H_3$$

$$P_{ATm} + pg H_3 + pg H_4$$

$$P_{ATm} + pg H_4 + pg H_4$$

$$P_{ATm} + pg H_4 + pg H_5$$

$$P_{ATm} + pg H_4 + pg H_5$$

$$P_{ATm} + pg H_5$$

$$P_{ATm} + pg H_6$$

$$P_{ATm} + pg H_6$$

$$P_{ATm} + pg H_7$$

$$P_{ATm} + pg H_8$$

$$P_{ATm} + pg H_8$$

$$P_{ATm} + pg H_9$$

$$P_{ATm} +$$

Problem 2:

A massless spring with spring constant K1 is depressed a distance X1 and used to fire a ball towards a second massless, uncompressed spring of spring constant K2. Find the distance X2 that the second spring will be compressed. Energy is conserved.

