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In this comprehensive review article,
we present the theory of symmetry in
two-dimensional (2-D) filter functions
and in 2-D Fourier transforms. It is
shown that when a filter frequency
response possesses symmetry, the
realization problem becomes relative-
ly simple. Further, when the frequency
response has no symmetry, there is a
technique to decompose that fre-
quency response into components
each of which has the desired symme-
try. This again reduces the complexity
of two-dimensional filter design.
A number of filter design examples
are illustrated.
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Introduction

T
he concept of symmetry is widely applied to geo-
metrical figures and has been the subject matter
since the days of Euclid. In fact, symmetry is an

important aspect of nature [1]. During the last few cen-
turies, this concept has been applied to abstract entities
such as mathematical functions [2] and also in the fields of
quantum mechanics and crystallography. One dimension-
al systems and polynomials can only have a limited num-
ber of symmetries such as even and odd functions
associated with, say, filter magnitude and phase functions,
respectively. A linear two-dimensional system has a trans-
fer function consisting of polynomials in two independent
complex variables say p1 and p2. In a similar way, three and
higher dimensional system functions can be defined in
terms of three or more complex variables. These multi-
dimensional functions arise from many practical engineer-
ing systems. For example, the pictorial signal in video
transmission systems is characterized by its brightness
function, which is a function of two spatial variables and
the time variable. Other occurrences of multi-dimensional
signals that have to be processed or filtered are in the
areas of digital imagery for medical x-rays, and in the analy-
sis of satellite weather photos; enhancement of television
pictures from lunar and deep space probes; etc. These two-
and higher-dimensional systems may possess many types
of symmetries. During the past twenty years, much
research has been done to reduce the complexity of the
design and implementation of multi-dimensional filters/
systems possessing symmetry. Since the impulse (spatio-
temporal) response and the two-dimensional frequency
response (2-D Fourier transform) are inter-related, it is to
be assumed that the symmetry in one function will induce
some form of symmetry on the other function.

The main aim of this tutorial article is to present these
interdependencies and also develop conditions on 2-D fil-
ter polynomials and functions to possess important sym-
metries with application in mind. It will be shown that the
complexity of the design and implementation could be
reduced in 2-D filters, both 2-D infinite impulse response
(IIR) as well as 2-D finite impulse response (FIR), by using
various types of symmetries in the frequency responses
of these filters [3–14]. It has been established that by
using the constraints arising out of quadrantal, diagonal,
four-fold rotational, and octagonal symmetries, efficient
filter design algorithms could be developed [15–20].
Some of those design techniques are illustrated in the
paper. In addition, the usefulness of symmetry in reduc-
ing the complexity with regard to 2-D Fast Fourier Trans-

form (FFT) algorithm is also presented. The paper is con-
cluded with a discussion on symmetrical decomposition
of non-symmetric data and transformations. The follow-
ing is the layout of the paper section by section.

In “Basic Symmetry Definitions and Understanding”, a
unified expression in terms of five parameters is present-
ed to represent the various symmetries and a number of
useful symmetries listed. This is followed in the section
“Two-Dimensional Fourier Transform Pairs with Symme-
try” by a discussion of symmetry in 2-D Fourier transform
pairs. In “Symmetry and 2-D Fast Fourier Transform”, the
application of symmetry to speed up the fast Fourier
transform calculations for signals with some symmetries
is discussed. The section “Symmetry in 2-D Magnitude
Response” explores symmetry in the magnitude respons-
es of 2-D analog and digital filters and presents design
techniques that effectively utilize the symmetry condi-
tions. The application of symmetry conditions developed
earlier for the design and implementation of filters whose
responses do not possess any symmetries is considered
in “Symmetrical Decomposition and Transformation”.
The final section concludes the paper with a summary of
the results presented in this paper.

Basic Symmetry Definitions and Understanding

To follow the symmetry concept, let us consider a real
rational function f(x1, x2) in two independent variables x1

and x2. For each pair of values of x1 and x2, the function f
assumes a unique value. This can be represented by a
three-dimensional object with x1, x2 plane as the base
with height represented by the value of the function at
each point in the plane. This gives a three-dimensional
object. “A thing is symmetrical if one can subject it to a
certain operation and it appears exactly the same after
the operation” [21]. Expanding on this definition, one
may say that the function f possesses symmetry if a pair
of operations, performed simultaneously, one on the vec-
tor of variables (constituting (x1, x2)-plane), and the other
on the value or height of the function, leaves the shape of
the function f undisturbed. The existence of symmetry in
f(x1, x2) implies the value of the function at (x1, x2) in a
region is some way related to the value of the function at
(x1T , x2T ) where (x1T , x2T ) is obtained by some operation
on (x1, x2), this condition being satisfied at all points in
the region. Using this idea, the T − ψ symmetry of a func-
tion may be defined as follows [19]:

Definition: A function f(x) is said to possess a T − ψ sym-
metry over a domain D if 
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ψ
[
f
(
T [x]

)] = f
(
x
)

for all x ∈ D (1)

where ψ is an operation on the value of f(x) and T is an
operation on x that maps D onto itself on a one-to-one
basis. Different T − ψ operations give rise to different
symmetries and the symmetries derive their names, such
as x1 = x2 diagonal reflection anti-symmetry, 4-fold rota-
tional conjugate symmetry, and so on, based on the T and
ψ operations.

In the T − ψ symmetry definition given above, if the
region D consists of all the points in the whole x domain,
i.e., D = X, then the function is said to possess a
global T − ψ symmetry. Here, we will restrict our atten-
tion only to global T − ψ symmetries and the adjective
“global” will be omitted in their descriptions. We will next
discuss the nature of ψ and T operations, and consider a
few of the commonly found symmetries.

Nature of ψ -Operations
Of the many possible complex scalar operations, the fol-
lowing definition for ψ covers many useful ones:

ψ[f(x)] = |f(x)|ej(δ�f(x)+β t x+φ)
(2)

where δ = ±1, �f(x) denotes the argument of f(x), β is a
(2 × 1) real constant vector and φ is a real constant. From
equation (2), it may be seen that ψ does not alter the
magnitude of f(x). The three parameters δ, β and φ alter
only the argument of f(x). From this, it is evident that if a
function possesses a T − ψ symmetry with respect to any
set of parameters (δ, β and φ) then the magnitude of the
function possesses the T − ψ I symmetry, where ψ I rep-
resents the identity operation represented by the param-
eters δ = 1, β = 0 and φ = 0. Many of the commonly
occurring symmetries have β = 0. The term β t has been
included in the ψ operation to account for some of the
delay type symmetries that may be present in some func-
tions. We list in Table 1 four specific ψ -operations used in
various symmetry descriptions along with the commonly
used names and the proposed symbols.

Nature of T-Operations
Simple T -operations that find application in symmetry
studies can be represented by the transformation (known
as affine transformation in geometry):

T[x] = A · x + b (3)

where A is a nonsingular (2 × 2) real square matrix and b
is a (2 × 1) real vector.

T is said to be an equiaffine transformation if |A| = ±1
in which case corresponding regions in the transformed
and the original domains have the same area. T is said to
be a congruent transformation if the Euclidean distance
between any two points in the original region is equal to
that between the corresponding (image) points in the
transformed region. This will be so if and only if the matrix
A is orthogonal, i.e., A = (A−1

)t . It is to be noted that the
compounding of two transformations, T1T2, refers to an
operation T consisting of operation T2 followed by T1. The
compounding of transformations always obey the asso-
ciative law, i.e., T1(T2T3) = (T1T2)T3. In addition, if T1 and
T2 are two nonsingular transformations, then T1T2 and
T2T1 are also nonsingular transformations.

Some of the well-known T -transformations are: (i) dis-
placement transformation; (ii) rotational transformation;
and (iii) reflection transformation. In Table 2, we list a few
of the basic transformations involving only reflection and
rotation. 

Here, b = 0 and the A matrices are formed using 1 or
−1 as elements on the diagonal or off the diagonal. This
results in altogether eight different combinations. One of
these is the identity operation I, which is a trivial case.
The remaining seven operations are shown in Table 2. Of
these operations, only five are needed as the product of
these will give the remaining two. As such, in the rest of
this paper, we will use only the first five operations (i)–(v)
listed in Table 2.

It is easy to see that the transformations in Table 2 are
equiaffine and congruent. In addition, the following are
some interesting properties:

(a)  T1 = −T2 = T7 · T2

(b)  T3 = −T4 = T7 · T4

(c)  T1 · T2 = T2 · T1 = − I = T7

(d)  T3 · T4 = T4 · T3 = − I = T7

(e)  T 2
5 = − I = T7

Further, the T -operations can be clas-
sified by the number of cycles. A T -
operation is said to be k-cyclic if k
repeated T -operations on x yields the
same original x. That is: Tk[x] = x or
stated in another way Tk = I (where I

6

δ β φ ψ-operations Symmetry Name Symbol

1 0 0 ψ
[
f
(
x
)] = f

(
x
)

Identity symmetry ψI

1 0 π ψ
[
f
(
x
)] = −f

(
x
)

Anti-symmetry ψA

−1 0 0 ψ
[
f
(
x
)] = [

f
(
x
)]∗

Conjugate symmetry ψC

−1 0 π ψ
[
f
(
x
)] = − [

f
(
x
)]∗

Conjugate anti-symmetry ψCA

Table 1. 
ψ-operations and the names of the resulting symmetries.
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Type of Symmetry Conditions

Quadrantal Symmetry f(x) = f(T1[x]) = f(T1T2[x]) = f(T2[x])

Diagonal Symmetry f(x) = f(T3[x]) = f(T3T4[x]) = f(T4[x])

Four-Fold (90◦) Rotational Symmetry f(x) = f(T5[x]) = f
(
T2

5[x]
) = f

(
T3

5[x]
)

Octagonal Symmetry f(x) = f(T1[x]) = f(T2[x])
= f(T3[x]) = f(T4[x])
= f(T5[x]) = f

(
T2

5[x]
) = f

(
T3

5[x]
)

is the identity matrix). For example, T2
1 = I and T4

5 = I.
So, operations (i)–(iv) listed in Table 2 are 2-cyclic, while
(v) is 4-cyclic. 

Composite Symmetry Operation and
Symmetry Parameters
We now combine the T and ψ operations and define a
composite symmetry operation λ as λ = (T, ψ) =
(A, b, δ, β, φ) where T[x] = A · x + b and ψ[f(x)] =
|f(x)|ej(δ�f(x)+β t x+φ) .

In terms of λ, the symmetry definition can be given as

λ[f(x)] = f(x), ∀ x ∈ D (4)

The five parameters (A, b, δ, β, φ) describe the symmetry
operation completely and they will hereafter be called
symmetry parameters and be used to specify the various
symmetries. 

Various T−ψI Symmetries
Employing the various T and ψ operations, one can gen-
erate various symmetries. For example, using the T -oper-
ations (i)–(v) in Table 2 and assuming the identity ψ I , we
have the following standard symmetries. (Note that the
corresponding anti-symmetry, conjugate-symmetry, and
conjugate-anti-symmetry can be obtained by applying the
ψA, ψC , and ψCA operations respectively).

(i) Reflection about x1-axis symmetry: f(x) = f(T1[x]).
(ii) Reflection about x2-axis symmetry: f(x) = f(T2[x]).
(iii) Reflection about x1 = x2 diagonal symmetry:

f(x) = f(T3[x]).
(iv) Reflection about x1 = −x2 diagonal symmetry:

f(x) = f(T4[x]).
(v) 90◦ clockwise rotational symmetry: f(x) = f(T5[x]).

This also implies f(T5[x]) = f(T2
5 [x]) and f(T2

5 [x]) =
f(T3

5 [x]), through repeated substitution of x = T5[x].

7

A b Name of operation Symbol

(i)

[
1 0
0 −1

]
0 Reflection about x1-axis T1

(ii)

[−1 0
0 1

]
0 Reflection about x2-axis T2

(iii)

[
0 1
1 0

]
0 Reflection about x1 = x2 diagonal T3

(iv)

[
0 −1

−1 0

]
0 Reflection about x1 = −x2 diagonal T4

(v)

[
0 1

−1 0

]
0 90◦ clockwise rotation about origin T5

(vi)

[
0 −1
1 0

]
0 90◦ anti-clockwise rotation about origin T6

(vii)

[−1 0
0 −1

]
0 180◦ rotation about origin T7

Table 2. 
Basic T-operations.
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(vi) Centro (180◦ rotation) symmetry: f(x) = f(−x). This
can also be expressed as f(x) = f(T2

5 [x]) or
f(x) = f(T1T2[x]) or f(x) = f(T3T4[x]).

These symmetries are shown in Figures 1 (a)–(f). It is
to be noted that the function values in the colored regions
are the same, since we assumed ψ I . For example, in Fig-
ure 1(b), the function values in the regions denoted by
f(x) and f(T2[x]) are the same. This is clearly the result of
x2-axis reflection symmetry.

The number of cycles in a symmetry determines the
number of regions in its figure with the same function
values. Reflection symmetries about x1-axis, x2-axis,
x1 = x2 diagonal, x1 = −x2 diagonal, as well as centro
symmetry, are all 2-cyclic symmetries. So they have two
regions of symmetry in the X -plane. 90◦ clockwise rota-
tional symmetry is 4-cyclic. So it has four regions of sym-
metry in the X -plane (although only two are shown in
Figure 1(e)). For this reason, we usually call it four-fold
(90◦) rotational symmetry.

In addition to these basic symmetries, more complex
symmetries can be generated using a combination of dif-

ferent T -operations. For example, using a combination of
T1 and T2 operations, we can obtain quadrantal symme-
try. Diagonal symmetry can be obtained using both T3

and T4 operations. These compound symmetries are list-
ed in Table 3. (Once again, for illustration, we show only
the symmetries resulting from the ψ I operation.) 

From “Nature of T-Operations,” we can make some
important observations on the compound symmetries in
Table 3:

(a) Quadrantal symmetry is a combination of x1-axis
reflection, x2-axis reflection, and centro symmetries. The
presence of any two of the symmetries implies the exis-
tence of the third, i.e. T1 · T2 => − I, − I · T1 => T2, and
− I · T2 => T1. So only two of the three symmetries are
needed to ensure quadrantal symmetry. Also, each equa-
tion in the quadrantal symmetry condition defines a sym-
metry region in the X -plane. Since there are four
equations in the symmetry condition, there will be four
regions of symmetry in the X -plane. Finally, in terms of
cycles, quadrantal symmetry is a double 2-cyclic symme-
try (T1 · T2) · (T1 · T2) = I . Because of the cyclical proper-
ty, the operation Tm

1 Tn
2 , where m and n are integers,
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Figure 1(b). x2-axis reflection sym-
metry.

Figure 1(a). x1-axis reflection
symmetry.

Figure 1(f). Centro (180◦ rotation)
symmetry.

Figure 1(e). −90◦ clockwise rota-
tion symmetry.

Figure 1(c). x1 = x2 diagonal reflec-
tion symmetry.

Figure 1(d). x1 = −x2 diagonal
reflection symmetry.



corresponds to one of the following four possibilities: I,
T1T2, T1, or T2.

(b) Diagonal symmetry is a combination of x1 = x2

diagonal, x1 = −x2 diagonal, and centro symmetries. The
presence of any two of the three symmetries implies the
existence of the third and is enough to ensure diagonal
symmetry. Diagonal symmetry is a double 2-cyclic sym-
metry. The operation Tm

3 Tn
4 , where m and n are integers,

corresponds to one of the following four possibilities: I,
T3T4, T3, or T4. This results in four regions of symmetry in
the X -plane.

(c) Four-fold (90◦) rotational symmetry is a 4-cyclic
symmetry. It is formed by four repeated application of T5.
As such, there are four regions of symmetry in the X -
plane for 4-fold rotational.

(d) Octagonal symmetry is a combination of quadran-
tal, diagonal and 4-fold rotational symmetries. The pres-
ence of any two of the three symmetries implies the
existence of the third, and is sufficient to guarantee octag-
onal symmetry. More specifically, octagonal symmetry
can result from the presence of 4-fold rotational symmetry
and one of the following symmetries: x1-axis reflection, x2-
axis reflection, x1 = x2 diagonal reflection, or x1 = −x2

diagonal reflection. So, we can classify octagonal symme-

try as a combination of 4-cyclic
and 2-cyclic symmetries. Alterna-
tively, octagonal symmetry can
also result from the presence of
any three of the following sym-
metries: x1-axis reflection, x2-axis
reflection, x1 = x2 diagonal
reflection, or x1 = −x2 diagonal
reflection. Thus, octagonal sym-
metry can also be classified as a
triple 2-cyclic symmetry. Finally,
since eight equations are in-
volved in the symmetry condi-
tion, there are eight regions of
symmetry in the X -plane for
octagonal.

To aid in understanding, Fig-
ures 2(a)–(d) show the graphical
interpretation of the quadrantal,
diagonal, rotational, and octago-
nal symmetries. Once again, the
values of the function in the col-
ored regions are related to one
another in the manner specified
by the ψ operation (i.e. identity,
negative, conjugate, or negative
conjugate). From the figures, one
should be able to confirm, as
previously discussed, that there

are four regions of symmetry in the X -plane for quadran-
tal, diagonal, and 4-fold rotational symmetries, and eight
regions for octagonal symmetry. Note that

f(T1T2[x]) = f(T3T4[x]) = f
(

T2
5 [x]

)

= f(−x)

Two-Dimensional Fourier Transform Pairs with Symmetry

Two-dimensional (2-D) Fourier transform plays an impor-
tant role in the analysis and design of 2-D linear systems.
The transform uniquely relates the impulse or unit sam-
ple response of a linear system with its frequency
response. Hence, symmetry in one response (either
impulse or frequency response) may be expected to
induce some form of symmetry in the other response.
The existence of such symmetries can be utilized to sim-
plify the analysis and design of these systems. Such uti-
lization and the resulting simplification have been
reported in the design and analysis of two and higher
dimensional digital filters. Here, we present, in a unified
manner, the type of symmetry induced in one function
(Fourier transform or inverse Fourier transform) as a
result of a particular symmetry in the other function for
both continuous and discrete-time signals.
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Figure 2(b). Diagonal Symmetry.
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Figure 2(d). Octagonal Symmetry.
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Figure 2(c). 4-fold Rotational Symmetry.

Figure 2(a). Quadrantal Symmetry.



Continuous-Time Continuous-
Frequency Case
Let g(l) = g(l1, l2), where l1, l2
are real numbers, be a two-
dimensional signal and
G(ω) = G( jω1, jω2) be the two-
dimensional Fourier transform
of g(l). In general, we assume
g(l) and G(ω) to be complex
functions of real variables and
g(l) is such that its 2-dimension-
al Fourier transform G(ω)

exists. If g(l) is the impulse
response of a stable continuous
domain system, the conditions
for the existence of its Fourier
transform will always be satis-
fied. The Fourier transform pair
connecting g(l) and G(ω) are as
follows:

G(ω) =
∫

l∈L

g
(
l
) · e− jωt l · dl (5)

and

g(l) = 1

(2π)2

∫
ω∈W

G(ω) · ejltω · dω (6)

where dl �= dl1 · dl2 and dω
�= ω1 · dω2.

As g(l) and G(ω) are functions of 2 variables, they may
possess some of the T − ψ symmetries described in the
section “Basic Symmetry Definitions and Understanding.”
We next state a theorem which gives the nature of a T − ψ

symmetry that will be present in g(l), given a symmetry in
G(ω) and vice-versa. The proof of this theorem can be
found in [22].

Theorem 1: Let g(l) and G(ω) form a 2-dimensional Fouri-
er transform pair. Then G(ω) possesses a T − ψ symme-
try with parameters (A, b, δ, β, φ), |A| = ±1, if and only if
g(l) possesses a T − ψ symmetry with parameters
(δ · (A−1

)t, δβ, δ,−δb, btβ + φ) where A, b, δ, β, φ are as
defined in the section “Basic Symmetry Definitions and
Understanding.”

Observations: Next we make the following observations
based on Theorem 1.

(i) If (A, b, δ, β, φ)ω and (A, b, δ, β, φ)l are respectively
the ω-domain and the l-domain symmetry parameters,
the corresponding l and ω domain parameters are
obtained by the following relations:

(A, b, δ, β, φ)ω ⇒ (δ · (A−1)t, δβ, δ,−δb, btβ + φ)l (7)

and

(A, b, δ, β, φ)l ⇒ (δ · (A−1)t,−δβ, δ, δb, btβ + φ)ω (8)

One can easily verify the compatibility of the two rela-
tions by noting that one relation is the inverse of the
other relation. The reason for the appearance of the neg-
ative sign in front of δb in (7) whereas it is in front of δβ in
(8) may be attributed to the differing signs in e± jωt l in the
definitions of Fourier and inverse Fourier transforms (5)
and (6).

(ii) Theorem 1 and the observation (i) also illustrate
the duality present in ω and l domain symmetries.

(iii) Further, it may be noted that the nature of sym-
metry transformation, such as rotation, reflection, etc., as
identified by the A-matrix remains the same in both the ω
and l domains.

(iv) Identical symmetries resu1t in both ω and l
domains if δ = 1, b = 0 and β = 0.

We next illustrate the application of Theorem 1 using
an example.

Example 1: Let G(ω) possess a centro-conjugate symme-
try specified by the parameters: (A, b, δ, β, φ)ω =([−1 0

0 −1

]
,

[
0
0

]
,−1,

[
0
0

]
, 0

)
. Then, as per Theorem 1, the

parameters of the T − ψ symmetry of g(l) will be([
1 0
0 1

]
,

[
0
0

]
,−1,

[
0
0

]
, 0

)
. Substituting these parameters in the

definition of T − ψ symmetry, we get:
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Figure 3. Symmetry-based FFT Diagram.



∣∣g(l)
∣∣ ej{−�g(l)} = g

(
l
)

i.e.,
[
g

(
l
)]∗ = g

(
l
)

or in other words g(l) possesses an identity conjugate
symmetry. This can only be satisfied if g(l) has real coef-
ficients.

Example 2: Let g(l) possess a 4-fold rotational anti-sym-
metry specified by the parameters: (A, b, δ, β, φ)l =([

0 −1
1 0

]
,

[
0
0

]
, 1,

[
0
0

]
, π

)
. Then, as per Theorem 1, the parame-

ters of the T − ψ symmetry of G(ω) will be([
0 −1
1 0

]
,

[
0
0

]
, 1,

[
0
0

]
, π

)
. It can be seen that G(ω) possesses

the same 4-fold rotational anti-symmetry, which agrees
with observation (iv).

Example 3: Let a one-dimensional signal g(l) possess a
translation symmetry (periodicity) specified by the
parameters: (A, b, δ, β, φ)l = ([1], [L], 1, [0], 0). Then, as
per Theorem 1, the parameters of T − ψ symmetry
of G(ω) will be ([1], [0], 1, [L], 0). The resulting con-
straint on G(ω) is given by

G(ω) · ejLω = G(ω)

It may be noted that this equation will be satisfied only if
G(ω) = 0 for all ω except those discrete frequencies cor-
responding to ωk = 2kπ/L. It may be noted that this cor-
responds to Fourier transform of periodic signals (i.e.
Fourier series).

Continuous-Time Discrete-Frequency Case 
(Fourier Series)
Let h(l) = h(l1, l2) be a 2-D continuous-time periodic sig-
nal with periods L1 and L2, respectively in l1 and l2 direc-
tions. Let H[k] = H[k1,k2] be the two-dimensional
Fourier series coefficients of h(l1, l2). The relations
between h(l) and H[k] are given by

H [k] = 1
L1 · L2

·
L1∫

l1=0

L2∫
l2=0

h(l) · e− j·kt ·V·l · dl (9)

and

h(l) =
∑

k

H [k] · ej·kt ·V·l (10)

where

V =
[

V1 0
0 V2

]
=

[ 2·π
L1

0

0 2·π
L2

]

represents the fundamental frequencies in the two direc-
tions. It may be verified that h(l) is a doubly periodic func-
tion indicating the existence of displacement symmetries.
In the following, we will consider the general T − ψ sym-
metry relations.

Theorem 2: Let H[k] be the Fourier series representation
of a periodic function h(l). Then h(l) possesses a T − ψ

symmetry with parameters (A, b, δ, β, φ), |A| = ±1, if and
only if H[k] possesses a T − ψ symmetry with parame-
ters (δ · (A−1

)t,−δ · V−1 · β, δ, δ · V · b, btβ + φ) where
A, b, δ, β, φ are as defined in the section “Basic Symmetry
Definitions and Understanding.”

It may be noted that the overall nature of the symme-
try parameters in Theorem 1 and 2 are the same except in
Theorem 2, the normalizing fundamental frequency
matrix appears. It should also be noted that b and
−δ · V−1 · β are integer vectors. The observations made at
the end of the discussions in the continuous domain case
are applicable here also. Consequently, the relations
between k and l domain parameters are given by

(A, b, δ, β, φ)l

⇒
(
δ · (A−1)t,−δ · V−1 · β, δ, δ · V · b, btβ + φ

)
k

(11)

and

(A, b, δ, β, φ)k

⇒
(
δ · (A−1)t, δ · V−1 · β, δ, −δ ·V · b, btβ + φ

)
l

(12)
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In the application of this theorem, it should be noted that
h(l) is periodic and H[k] is a discrete domain function.

Discrete-Time Continuous-Spectrum Case
Let h(n) = h(n1,n2), where n1, n2 are integers, be a two-
dimensional discrete domain signal and H(θ) =
H(e− jθ1, e− jθ2) be the two-dimensional Fourier transform
of h(n). When h(n) represents the unit sample response of
a discrete domain system, H(θ) will represent its fre-
quency response. The Fourier transform pair connecting
h(n) and H(θ) are given by:

H(θ) =
∑

n∈N2

h(n) · e− jθ tn (13)

and

h(n) = 1
(2π)2

∫

θ∈θp

H(θ) · ejntθ · dθ (14)

where θp = {θ | − π ≤ θ1 ≤ π,−π ≤ θ2 ≤ π} and dθ =
dθ1 · dθ2.

It may easily be verified from (13) that H(θ) is a peri-
odic function of θ with a period of 2π in the θ1 and θ2

directions. As h(n) and H(θ) are functions of two vari-
ables, they may possess some of the T − ψ symmetries
described in “Basic Symmetry Definitions and Under-
standing.” Because of the periodic nature of H(θ), dis-
placement symmetries in θ1 and θ2 directions are
always present. This is due to the discrete nature of
h(n). We will consider the effects of the remaining sym-
metries that will be present in h(n), given a symmetry in
H(θ) and vice-versa. This is presented in the following
theorem.

Theorem 3: Let h(n) and H(θ) be a two-dimensional Fouri-
er transform pair. Then H(θ) possesses a T − ψ symme-
try with parameters (A, b, δ, β, φ), |A| = ±1, if and only if
h(n) possesses a T − ψ symmetry with parameters
(δ · (A−1

)t, δβ, δ,−δb, btβ + φ) where A, b, δ, β, φ are as
defined in “Basic Symmetry Definitions and Under-
standing.”

The similarity between Theorem 3 and Theorem 1
should be obvious. As such, the observations made at the
end of the discussion in the continuous domain case are
applicable to the discrete domain case as well. Conse-
quently, the relations between θ and n symmetry param-
eters are given by:

(A, b, δ, β, φ)θ ⇒ (δ · (A−1)t, δβ, δ,−δb, btβ + φ)n (15)

and

(A, b, δ, β, φ)n ⇒ (δ · (A−1)t,−δβ, δ, δb, btβ + φ)θ (16)
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In the application of this theorem, it should be noted
that h(n) is a function of discrete domain variable n and
h(n) = 0 if n is not an integer vector. 

Discrete-Time Discrete-Frequency Case
(Discrete Fourier Transform)
Let h[n] = h[n1,n2] be a two-dimensional discrete-
domain signal defined over 0 ≤ n1 ≤ (N1 − 1) and
0 ≤ n2 ≤ (N2 − 1). Then its (N1, N2) length 2-D discrete
Fourier transform is given by

H [k] = H [k1,k2] =
N1−1∑
n1=0

N2−1∑
n2=0

h [n] · e− j·k t ·V·n,

0 ≤ k1 ≤ (N1 − 1)

0 ≤ k2 ≤ (N2 − 1) (17)

where 

V =
[ 2·π

N1
0

0 2·π
N2

]

The inverse discrete Fourier transform is given by

h [n] = h [n1,n2]

= 1
N1 · N2

·
N1−1∑
k1=0

N2−1∑
k2=0

H [k] · ej·k t ·V·n (18)

It may be noted that even though h[n1,n2] and
H[k1,k2] are defined in the square [0, N1 − 1] ×
[0, N2 − 1], they satisfy the doubly periodic relations
h [n1 + r1 · N1,n2 + r2 · N2] = h [n1,n2] for any integer 
r1 and r2 and similarly
H [k1 + r1 · N1,k2 + r2 · N2] = H [k1,k2] for any integer r1

and r2. The symmetry relations between h and H are given
in terms of T − ψ parameters next.

Theorem 4: Let H[k] be the discrete Fourier transform of
h[n]. Then h[n] possesses a T − ψ symmetry with
parameters (A, b, δ, β, φ) if and only if H[k] possesses a
T − ψ symmetry with parameters
(δ · (A−1

)t,−δ · V−1 · β, δ, δ · V · b, btβ + φ) where
A, b, δ, β, φ are as defined in “Basic Symmetry Defini-
tions and Understanding.”

As in the previous cases, the symmetry parameters of n
and k domains can be written as

(A, b,δ, β, φ)n

⇒ (δ · (A−1
)t,−δ · V−1 · β, δ, δ · V · b, btβ + φ)k

(19)and
(A, b,δ, β, φ)k

⇒ (δ · (A−1
)t, δ · V−1 · β, δ,−δ · V · b, btβ + φ)n

(20)
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Condition on Condition on 
Type of Symmetry FC (ω1, ω2),∀ (ω1, ω2) FD(θ1, θ2),∀ (θ1, θ2)

Quadrantal FC(ω1, ω2) = FC(−ω1, ω2)

= FC(ω1,−ω2)

= FC(−ω1,−ω2)

FD(θ1, θ2) = FD(−θ1, θ2)

= FD(θ1,−θ2)

= FD(−θ1,−θ2)

Diagonal FC(ω1, ω2) = FC(ω2, ω1)

= FC(−ω1,−ω2)

= FC(−ω2,−ω1)

FD(θ1, θ2) = FD(θ2, θ1)

= FD(−θ1,−θ2)

= FD(−θ2,−θ1)

Four-Fold (90◦) Rotational FC(ω1, ω2) = FC(−ω2, ω1)

= FC(−ω1,−ω2)

= FC(ω2,−ω1)

FD(θ1, θ2) = FD(−θ2, θ1)

= FD(−θ1,−θ2)

= FD(θ2,−θ1)

FC(ω1, ω2) = FC(ω2, ω1)

= FC(−ω2, ω1)

= FC(−ω1, ω2)

= FC(−ω1,−ω2)

= FC(−ω2,−ω1)

= FC(ω2,−ω1)

= FC(ω1,−ω2)

FD(θ1, θ2) = FD(θ2, θ1)

= FD(−θ2, θ1)

= FD(−θ1, θ2)

= FD(−θ1,−θ2)

= FD(−θ2,−θ1)

= FD(θ2,−θ1)

= FD(θ1,−θ2)

Table 4. 
Symmetries definitions for continuous and discrete domain magnitude squared functions.

In the application of this theorem it should be noted that
n and k are integer vectors and h[n] and H[k] are period-
ic with periods N1 and N2 in the two dimensions.

Symmetry and 2-D Fast Fourier Transform

Fast Fourier transform (FFT) is a frequently used opera-
tion on 2-D signals. For large size signals, it is also one of
the time consuming operation. So, any technique that
reduces this complexity is desirable. As noted earlier,
presence of symmetry in a signal yields some constraints
on the spectrum. Therefore, use of symmetry constraints
can be expected to reduce the complexity of evaluation of
2-D Fourier transforms. In this section, we will see how
fast Fourier transform can be made faster by the use of
symmetry constraints. First we will consider 1-D signals
and then we will discuss symmetry application to 2-D fast
Fourier transforms.

Symmetry-Based 1-D FFT
Let x[n], n = 0, 1, . . . , (N − 1) be an N -length 1-D com-
plex signal and X [k], k = 0, 1, . . . , (N − 1), be the N -
length discrete Fourier transform (DFT) of x[n]. X [k] is
given by

X [k] =
N−1∑

n=0

x [n] · Wk·n
N , k = 0, 1, . . . , (N − 1) (21)

where WN = e− j 2π
N .

The DFT requires approximately N2 complex multiplica-
tion and N2 complex additions. When N is a power of 2,

this can be reduced to N
2 log2 N complex multiplications

and N2 additions using what is called Cooley-Tukey fast
Fourier transform (FFT).

1-D signals may possess reflection symmetries, trans-
lation symmetries, and identity symmetries. Reflection
symmetries themselves can be with respect to the point
at N/2 or (N − 1)/2. To illustrate the application of sym-
metries and the resultant reduction in the complexity, 
we use reflection symmetry about the point (N − 1)/2.
Application of other symmetries yields similar reductions
in complexity.

If x[n] possesses reflection symmetry about
n = (N − 1)/2, then x[N − 1 − n] = x[n] for n = 0,

1, . . . , (N − 1). In terms of T − ψ parameters, this corre-
sponds to A = [−1], b = [N − 1], δ = 1, β = 0 and φ = 0.
The corresponding symmetry parameters in DFT domain
is given by 

Ak = [−1] , bk = [0] , δk = 1, βk = N −1 and φk = 0,

which yields the symmetry relation after employing the
periodic property of X [k],

X [k] = W−k
N · X [N − k] , k = 0, 1, . . . , (N − 1) (22)

Therefore, only half of X [k] and x[n] are independent and
once they are known, the other half can be determined
using the symmetry relation (22).

Assuming N to be even, we next show how X [k] can be
determined with less number of operations than the fast

Octagonal



Fourier transform. Using even and odd sample decompo-
sition we can write X [k] as

X [k] =
N−1∑

n = 0
n even

x [n] · Wk·n
N +

N−1∑
n = 0
n odd

x [n] · Wk·n
N

=
N
2 −1∑
r=0

x [2r] · Wk·2r
N +

N
2 −1∑
r=0

x [2r + 1] · Wk·(2r+1)

N (23)

= S0 [k] + Wk
N · S1 [k]

where S0 and S1 are N/2 point DFTs. Now using the sym-
metry properties x[N − 1 − n] = x[n], we can write S1 [k]
in terms of S0[k] as

S1 [k] = W−2k
N · S0

[ N
2 − k

]
(24)

So for k = 0, 1, 2, . . . , N
2 − 1,

X [k] = S0 [k] + Wk
N · W−2k

N · S0
[ N

2 − k
]

= S0 [k] + W−k
N · S0

[ N
2 − k

]

X
[ N

2 + k
] = S0 [k] − W−k

N · S0
[ N

2 − k
]

(25)

Thus X [k] for k = 0, 1, 2, . . . , (N − 1) can be determined
using N/2 even indexed samples. This is illustrated in the
flow diagram shown in Figure 3 on page 10.

It is noted that we need only one N
2 -point FFT instead

of the normal two. As a result, the total number of com-
plex multiplications needed is reduced to N

4 log2

( N
2

) + N
2

instead of N
2 log2 N in the non-symmetrical case. Thus use

of symmetry results in approximately 50% reduction in
the computational complexity.

2-D Symmetries
As in the 1-D case, symmetry can be utilized to reduce
the computational complexity of 2-D discrete Fourier
transforms. In the following, we illustrate the symmetry
application for centro symmetry and quadrantal symme-
try cases. 

As in the 1-D case, the reflection and rotation sym-
metries can be defined with respect to 

( N
2 , N

2

)
point or( N−1

2 , N−1
2

)
point. Because of periodicity of h, the sym-

metries with respect to 
( N

2 , N
2

)
will also correspond to

symmetries with respect to the origin (0, 0) for the
periodically extended signal. On the other hand, with
the choice of 

( N−1
2 , N−1

2

)
point for reflection or rotation,

the various symmetries will occur for h[n] with respect
to the center of the given data. In the following,( N−1

2 , N−1
2

)
is chosen in the definition of various sym-

metries for h[n].

Centro symmetry about 
(N−1

2 , N−1
2

)

An N × N array 2-D signal x[m,n] is said to possess cen-

tro symmetry about 
( N−1

2 , N−1
2

)
if 

x[N −1−m, N −1−n] = x[m,n] for 0 ≤ m,n ≤ N −1

The corresponding symmetry relation for its 2-D discrete
Fourier transform X [k, l] is given by

X [N − k, N − l] = Wk+l
N · X [k, l] (26)

Now employing the even-indexed and odd-indexed sam-
ples decomposition, X [k, l] can be written as

X [k, l] = S00 [k, l] + Wk
N · S10 [k, l]

+ Wl
N · S01 [k, l] + Wk+l

N · S11 [k, l]
(27)

where

S00 [k, l] =
N
2 −1∑
p =0

p even

N
2 −1∑
q = 0
q even

x [2p, 2q] · Wk·p+l·q
N
2

S10 [k, l] =
N
2 −1∑

p=0

N
2 −1∑

q=0

x [2p + 1, 2q] · Wk·p+l·q
N
2

S01 [k, l] =
N
2 −1∑

p=0

N
2 −1∑

q=0

x [2p, 2q + 1] · Wk·p+l·q
N
2

S11 [k, l] =
N
2 −1∑

p=0

N
2 −1∑

q=0

x [2p + 1, 2q + 1] · Wk·p+l·q
N
2

Now applying the symmetry relation we can write

S01 [k, l] = W−2(k+l)
N · S10

[ N
2 − k, N

2 − l
]

and

S11 [k, l] = W−2(k+l)
N · S00

[ N
2 − k, N

2 − l
]

Then,
X [k, l] = S00 [k, l] + Wk

N · S10 [k, l]
+ W−2k−l

N · S10
[ N

2 − k, N
2 − l

]

+ W−(k+l)
N · S00

[ N
2 − k, N

2 − l
] (28)

From the above expression it is seen that when the cen-
tro symmetry relation is employed, we need to compute
only two 

(
N
2 × N

2

)
size 2-D FFTs instead of four 

(
N
2 × N

2

)

size 2-D FFTs. Thus there is a 50% reduction in the com-
putational complexity.

Quadrantal symmetry
A 2-D array x[m,n] is said to possess quadrantal symme-
try if the following condition is satisfied:

x [m,n] = x [N − 1 − m,n] = x [m, N − 1 − n]

= x [N − 1 − m, N − 1 − n] (29)
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Discrete domain
(Note that xi = zi + z−1

i and yi = zi − z−1
i ,

Continuous domain i = 1, 2)

Centro Symmetry Centro Symmetry
P (s1, s2) · P (−s1,−s2)

=
m1∑

i=0

n1∑

j=0

aijs
2i
1 s2j

2 + s1s2

m2∑

i=0

n2∑

j=0

bijs
2i
1 s2j

2

Q (z1, z2) · Q
(
z−1

1 , z−1
2

)

=
m1∑

i=0

n1∑

j=0

cijx
i
1x

j
2 + y1y2

m2∑

i=0

n2∑

j=0

dijx
i
1x

j
2

Quadrantal Symmetry Quadrantal Symmetry

P (s1, s2) · P (−s1,−s2) =
m1∑

i=0

n1∑

j=0

aijs
2i
1 s2j

2 Q (z1, z2) · Q
(
z−1

1 , z−1
2

) =
m1∑

i=0

n1∑

j=0

cijx
i
1x

j
2

Diagonal Symmetry Diagonal Symmetry
P (s1, s2) · P (−s1,−s2)

=
m1∑

i=0

n1∑

j=0

aijs
2i
1 s2j

2 + s1s2

m2∑

i=0

n2∑

j=0

bijs
2i
1 s2j

2

Q (z1, z2) · Q
(
z−1

1 , z−1
2

)

=
m1∑

i=0

n1∑

j=0

cijx
i
1x

j
2 + y1y2

m2∑

i=0

n2∑

j=0

dijx
i
1x

j
2

where aij = aji and bij = bji. where cij = cji and dij = dji.

Four-Fold (90◦) Rotational Symmetry Four-Fold (90◦) Rotational Symmetry
P (s1, s2) · P (−s1,−s2)

=
m1∑

i=0

n1∑

j=0

aijs
2i
1 s2j

2 + s1s2

m2∑

i=0

n2∑

j=0

bijs
2i
1 s2j

2

Q (z1, z2) · Q
(
z−1

1 , z−1
2

)

=
m1∑

i=0

n1∑

j=0

cijx
i
1x

j
2 + y1y2

m2∑

i=0

n2∑

j=0

dijx
i
1x

j
2

where aij = aji and bij = −bji. where cij = cji and dij = −dji.

Octagonal Symmetry Octagonal Symmetry
P (s1, s2) · P (−s1,−s2) =

m1∑

i=0

n1∑

j=0

aijs
2i
1 s2j

2 Q(z1, z2) · Q
(
z−1

1 , z−1
2

) =
m1∑

i=0

n1∑

j=0

cijx
i
1x

j
2

where aij = aji. where cij = cji.

Table 5. 
Spectral forms of magnitude squared function for various symmetries.

It may be noted that quadrantal symmetry is defined here
with respect to the center of the array, 

( N−1
2 , N−1

2

)
. In the

expression (29) for X [k, l], S10[k, l], S01[k, l] and S11[k, l]
can be expressed in terms of S00[k, l] as shown next.

S10 [k, l] =
N
2 −1∑

p=0

N
2 −1∑

q=0

x [2p + 1, 2q] · Wp·k+q·l
N
2

= W−2k
N · S00

[ N
2 − k, l

]

S01 [k, l] = W−2l
N · S00

[
k, N

2 − l
]

and

S11 [k, l] = W−2(k+l)
N · S00

[ N
2 − k, N

2 − l
]

Then X [k, l] can be written in terms of S00 solely as 

X [k, l] = S00 [k, l] + W−k
N · S00

[ N
2 − k, l

]

+ W−l
N · S00

[
k, N

2 − l
]

+ W−(k+l)
N · S00

[ N
2 − k, N

2 − l
] (30)

It is then noted that evaluation of X [k, l] require the eval-
uation of four N

2 × N
2 size 2-D FFT’s when x[m,n] does not

possess any symmetry whereas only one N
2 × N

2 size 2-D
FFT is required when the quadrantal symmetry is present
in x[m,n]. In other words, utilization of the quadrantal
symmetry in x[m,n] reduces the computational com-
plexity by approximately 75%. It may also be noted that

quadrantal symmetry in x[m,n] as defined in (29) results
in a form of quadrantal symmetry in X [k, l] as

X [k, l] = W−k
N · X [N − k, l] = W−l

N · X [k, N − l]
= W−(k+l)

N · X [N − k, N − l]
(31)

Symmetrical Decomposition For
Data Without Symmetry
In many situations, signals do not possess any symme-
tries. In those cases, symmetry results cannot be applied
if we process the signals as they are. One way of dealing
with this situation is to decompose the signal into signals
possessing symmetries and anti-symmetries. For exam-
ple, x[m,n] can be decomposed as

x [m,n] = x00 [m,n] + x10 [m,n]
+ x01 [m,n] + x11 [m,n]

(32)

where x00 possesses quadrantal symmetry, x10 possesses
quadrantal anti-symmetry of type 1 (anti-symmetry w.r.t.
m and symmetry w.r.t. n), x01 possesses quadrantal anti-
symmetry of type 2 (symmetry w.r.t. m and anti-symme-
try w.r.t. n), and x11 possesses quadrantal anti-symmetry
of type 3 (anti-symmetry w.r.t. both m and n).

Then each component can be processed using appro-
priate symmetry properties. While this method may not



reduce the overall complexity, it will facilitate parallel
processing of major computations.

Symmetry in 2-D Magnitude Response

In the design of two-dimensional filters, the design speci-
fications are usually given in terms of the magnitude spec-
trum which possesses certain symmetries, while the
phase characteristic is either not known or is not impor-
tant. In such cases, it is desirable to know the types of
transfer functions that can support the specified symme-
try in the magnitude response. In this section, we will
present the constraints on the numerator and denomina-
tor polynomials of the transfer function, in order for them
to possess the required symmetry and stability. 

2-D Magnitude Response—Continuous and Discrete
Recall that the ψ operation only affects the phase of the
frequency response and not the magnitude. Hence, when
dealing with magnitude symmetry, we assume ψ = ψ I

and call our T − ψ symmetry as simply T -symmetry.
Now, in order for the magnitude response of a transfer
function to possess a particularly symmetry, both the
numerator and denominator polynomials have to pos-
sess the symmetry individually. In other words, when
studying the symmetry constraints on the transfer func-
tion, one need only focus on the polynomial symmetry
constraints on the numerator and denominator. This
observation is a consequence of the following theorem. 

Theorem 5: Let FC (ω) = P(ω)/D(ω) be a magnitude
squared function where P(ω) and D(ω) are relatively
prime polynomials. If FC (ω) possesses a T−symmetry,
then P(ω) and D(ω) should possess the same T -symme-
try individually.

It is to be noted that Theorem 5 also holds for discrete-
domain cases, with appropriate change of variables.

Continuous-domain magnitude response
Let P(s1, s2) be a continuous domain polynomial. Then its
frequency response P( jω1, jω2) is obtained by evaluating
the polynomial on the imaginary axes of the (s1, s2)

biplane as shown in Figure 4 on page 11. Here, ω1 and ω2

denote the real frequency variables in the two-dimen-
sional frequency plane: W 2 = W1 × W2.

If P(s1, s2) only has real coefficients, then the magni-
tude-squared function FC (ω1, ω2), defined over the entire
W 2 plane, is given by:

FC (ω1, ω2) = |P( jω1, jω2)|2
= P( jω1, jω2) · P(− jω1,− jω2) (33)

From (33), it is easy to see that the magnitude squared
function is an even function in both ω1 and ω2, i.e.
FC (ω1, ω2) = FC (−ω1,−ω2). So it should always be

expressible as the following general form:

FC (ω1, ω2) = FC 1
(
ω2

1, ω
2
2

) + ω1ω2FC 2
(
ω2

1, ω
2
2

)
(34)

Applying analytic continuation to (33) and (34), we can
write:

P(s1, s2) · P(−s1,−s2) = FC 1
(
s2

1, s2
2

) + s1s2FC 2
(
s2

1, s2
2

)
(35)

One can observe that the magnitude squared function is
a rational function  in s1 and s2. This is the reason why we
choose to work with the magnitude squared function
rather than the magnitude function which is not rational.

Discrete-domain magnitude response
For the discrete domain case, assuming that the polyno-
mial is Q(z1, z2), its frequency response Q(e− jθ1, e− jθ2) is
obtained by evaluating the polynomial on the boundary
of the unit circles in the (z1, z2) biplane as shown in 
Figure 5 on page 11. The discrete-domain frequency vari-
ables θ1 and θ2 are related to the continuous-domain ones
through θ1 = ω1 · T and θ2 = ω2 · T , where T is the sam-
pling period in both directions.

If Q(z1, z2) possesses only real coefficients, then the
magnitude-squared function FD(θ1, θ2) is obtained by:

FD(θ1, θ2) = |Q(e− jθ1, e− jθ2)|2
= Q(e− jθ1, e− jθ2) · Q(ejθ1, ejθ2) (36)

Once again, it is easy to see that the magnitude squared
function is an even function, i.e. FD(θ1, θ2) =
FD(−θ1,−θ2). As such, it should be expressible as:

FD(θ1, θ2) =FD1(cos θ1, cos θ2)

+ sin θ1 · sin θ2 · FD2(cos θ1, cos θ2) (37)

It should be obvious that, in the above, cos(θi) is even and
sin (θi) is odd.

Using analytic continuation, we have:

Q(z1, z2) · Q
(
z−1

1 , z−1
2

)

= FD1
(
z1 + z−1

1 , z2 + z−1
2

) + (
z1 − z−1

1

) · (z2 − z−1
2

)

· FD2
(
z1 + z−1

1 , z2 + z−1
2

)
(38)

Equations (35) and (38) give the spectral forms of the
magnitude squared functions for the continuous domain
and discrete domain cases respectively. 

Bilinear transformation between 2-D continuous and
discrete variables
The double bilinear transformation si = (1 − zi)/(1 + zi),
i = 1, 2 is often used to generate a 2-D discrete domain
function from a 2-D continuous domain function. The
advantage of this method is that the symmetry present in
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the continuous domain magnitude response is carried
over to the discrete domain magnitude response. The fol-
lowing is a simple proof. Assume,

FD(z1, z2) = FC (s1, s2)|si=(1−zi)/(1+zi), i = 1, 2

In terms of the frequency variables, this can be expressed
as:

FD(θ1, θ2) = F (ω1, ω2)|ωi=tan(θi/2), i = 1, 2

Now if FC (s1, s2) possesses, say, 4-fold rational symmetry,
then 

FC (ω1, ω2) ≡ FC (−ω2, ω1)

So, 

FD(θ1, θ2) ≡ FC (− tan(θ2/2), tan(θ1/2))

≡ FD(−θ2, θ1)

Therefore, the discrete domain magnitude squared func-
tion obtained through bilinear transformation possesses
the same 4-fold rational symmetry present in the original
continuous domain function. It can be shown that this
result holds for the other symmetries as well. We sum-
marize in Table 4 on page 14 the symmetry conditions for
our magnitude squared functions in both continuous and
discrete domains.

Spectral Forms
In this section, we present the constraints on the magni-
tude squared function in order for it to possess the vari-
ous symmetries. Recall that for a continuous or discrete
domain transfer function with real coefficients, its magni-
tude squared function is always an even function. Focus-
ing on the continuous domain case, this means
FC (ω1, ω2) = FC (−ω1,−ω2). As such, the magnitude
squared function always possesses centro symmetry, and
is expressible as (34). Now, if FC (ω1, ω2) also possesses
quadrantal symmetry, then FC (ω1, ω2) = FC (ω1,−ω2).
Using (34), this can be written as:

FC 1
(
ω2

1, ω
2
2

)+ω1ω2FC 2
(
ω2

1, ω
2
2

)

=FC 1
(
ω2

1, ω
2
2

) − ω1ω2FC 2
(
ω2

1, ω
2
2

)
(39)

The above is only possible if FC 2(ω
2
1, ω

2
2) = 0. Thus,

FC (ω1, ω2) = FC 1(ω
2
1, ω

2
2). So the spectral form for the 

magnitude squared function that possesses quadrantal
symmetry is:

P(s1, s2) · P(−s1,−s2) = FC 1
(
s2

1, s2
2

)

=
m1∑

i=0

n1∑

j=0

aijs2i
1 s2 j

2 (40)

We can use the same procedure to obtain the spectral
forms for the other symmetries in continuous as well as
discrete domains. These spectral forms are listed in 
Table 5 on page 16.

Polynomial Symmetry
In order for a transfer function to possess various magni-
tude symmetries, the numerator and denominator poly-
nomials have to possess the same symmetries
individually. So, we now consider the symmetry con-
straints on the polynomials. We first introduce the fol-
lowing key theorem:

Theorem 6 (Unique factorization theorem for multivariable
polynomial) [23]: A multivariable polynomial can be fac-
tored into a set of irreducible polynomials and the factors
are unique within a multiplicative constant. In other
words, let P(ω) be factored in two ways as the left-, and
right-hand sides of the following identity:

K1

I1∏

i=1

Pi(ω) ≡ K2

I2∏

i=1

Qi(ω)

where all Pi(ω)’s and Qi(ω)’s are irreducible polynomials.
Then, it is required that I1 = I2 = I and  for each Pi(ω),
i = 1, 2, . . . , I, there exists a unique Qj(ω) (i may be equal
to j) such that

Pi(ω) = kjQj(ω)

where kj’s are constants such that K2 = K1

I∏
j=1

kj.

Using the unique factorization theorem, we can obtain
the polynomial factors that satisfy the various symme-
tries. For example, for quadrantal symmetry, its magni-
tude squared function has to satisfy FC (ω1, ω2) =
FC (ω1,−ω2), i.e.

P( jω1, jω2) · P(− jω1,− jω2) = P( jω1,− jω2) · P(− jω1, jω2)

Using analytic continuation, this becomes:

P(s1, s2) · P(−s1,−s2) = P(s1,−s2) · P(−s1, s2) (41)

If we assume P(s1, s2) to be irreducible, the unique factor-
ization theorem of multivariable polynomials states that
P(s1, s2) should satisfy one of the following two conditions:

(i)P(s1, s2)=k1 · P(s1,−s2)wherek1 is a real constant. (42)

(ii)P(s1, s2)=k2 ·P(−s1, s2)where k2 is a real constant. (43)

It is easy to see that for case (i), P needs to be even in s2,
and for case (ii), P needs to be even in s1. Therefore, the
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polynomial factors satisfying quadrantal symmetry are:
P
(
s1, s2

2

)
and P

(
s2

1, s2
)
. More factors can be derived if we

assume P to be reducible. These are P(s1, s2) · P(s1,−s2)

and P(s1, s2) · P(−s1, s2).
In Table 6 above we state the continuous and discrete

domain polynomial factors that posses the various sym-
metries. These factors are derived using the procedure
just discussed. It is to be noted that for the polynomial

factors listed under each symmetry, their products pos-
sess the same symmetry as well. For example, P1

(
s1, s2

2

)

and P2
(
s2

1, s2
)

each possess quadrantal symmetry. So their
product P1

(
s1, s2

2

) · P2
(
s2

1, s2
)

possesses quadrantal sym-
metry as well.

Symmetry and Stability
For a transfer function to possess symmetry, the denom-
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Discrete domain
(Note that xi = zi + z−1

i and yi = zi − z−1
i

Continuous domain for i = 1, 2)

Quadrantal Symmetry Quadrantal Symmetry

a) P
(
s1, s2

2

)
a) Q (z1, x2)

b) P
(
s2

1 , s2
)

b) Q (x1, z2)

c) P (s1, s2) · P (s1,−s2) c) Q (z1, z2) · Q
(
z1, z−1

2

)

d) P (s1, s2) · P (−s1, s2) d) Q (z1, z2) · Q
(
z−1

1 , z2
)

Diagonal Symmetry Diagonal Symmetry

a) P1 (s1, s2) a) Q1 (z1, z2)

b) P2
(
s2

1 , s2
2

) + s1s2P3
(
s2

1 , s2
2

)
b) Q2 (x1, x2) + y1y2Q3 (x1, x2) + y1Q4 (x1, x2)

+ s1P4
(
s2

1 , s2
2

) − s2P4
(
s2

2, s2
1

) − y2Q4 (x2, x1)

c) P (s1, s2) · P (s2, s1) c) Q (z1, z2) · Q (z2, z1)

d) P (s1, s2) · P (−s2,−s1) d) Q (z1, z2) · Q
(
z−1

2 , z−1
1

)

where where

P1 (s1, s2) = P1 (s2, s1) and Q1 (z1, z2) = Q1 (z2, z1) and

Pk
(
s2

1 , s2
2

) = Pk
(
s2

2, s2
1

)
for k = 2, 3. Qk (x1, x2) = Qk (x2, x1) for k = 2, 3.

Four-Fold (90◦) Rotational Symmetry Four-Fold (90◦) Rotational Symmetry

a) P1
(
s2

1 , s2
2

) + s1s2 · (s2
1 − s2

2

) · P2
(
s2

1 , s2
2

)
a) Q1 (x1, x2) + y1y2 · (x1 − x2) · Q2 (x1, x2)

b) 
(
s2

1 − s2
2

)
P1

(
s2

1 , s2
2

) + s1s2P2
(
s2

1 , s2
2

)
b) (x1 − x2) Q1 (x1, x2) + y1y2Q2 (x1, x2)

c) P (s1, s2) · P (−s2, s1) c) Q (z1, z2) · Q
(
z−1

2 , z1
)

d) P (s1, s2) · P (s2,−s1) d) Q (z1, z2) · Q
(
z2, z−1

1

)

e) P (s1, s2) · P (−s2, s1) e) Q (z1, z2) · Q
(
z−1

2 , z1
)

× P (−s1,−s2) · P (s2,−s1) ×Q
(
z−1

1 , z−1
2

) · Q
(
z2, z−1

1

)

where where 

Pk
(
s2

1 , s2
2

) = Pk
(
s2

2, s2
1

)
for k = 1, 2. Qk (x1, x2) = Qk (x2, x1) for k = 1, 2.

Octagonal Symmetry Octagonal Symmetry

a) 
(
s2

1 − s2
2

)α · P1
(
s2

1 , s2
2

)
, where α = 0 or 1. a) (x1 − x2)α · Q1 (x1, x2), where α = 0 or 1.

b) P
(
s2

1 , s2
) · P

(
s2

2, s1
)

b) Q (x1, z2) · Q (x2, z1)

c) P
(
s2

1 , s2
) · P

(
s2

2,−s1
)

c) Q (x1, z2) · Q
(
x2, z−1

1

)

d) P
(
s1, s2

2

) · P
(−s2, s2

1

)
d) Q (z1, x2) · Q

(
z−1

2 , x1
)

e) P2 (s1, s2) · P2 (−s1, s2) e) Q2 (z1, z2) · Q2
(
z−1

1 , z2
)

f) P2 (s1, s2) · P2 (s1,−s2) f) Q2 (z1, z2) · Q2
(
z1, z−1

2

)

where where 

P1
(
s2

1 , s2
2

) = P1
(
s2

2, s2
1

)
and Q1 (x1, x2) = Q1 (x2, x1) and

P2 (s1, s2) = P2 (s2, s1). Q2 (z1, z2) = Q2 (z2, z1) .

Table 6. 
Continuous and discrete domain polynomial factors possessing symmetry.



inator polynomial D(s1, s2) has to satisfy the conditions
for the symmetry as well as stability. So there is an addi-
tional stability constraint on the denominator polynomial
compared to the numerator polynomial. It has been
shown in [17, 24–26] that the sufficient condition for 2-D
continuous domain filters to be stable is that their trans-
fer functions do not have any poles in the region of the
(s1, s2) biplane defined by Re(s1) ≥ 0 and Re(s2) ≥ 0,
including infinite distant points. Similarly, a sufficient con-
dition for the stability of 2-D discrete domain filters is that
their transfer functions do not have any poles in the
region of the (z1, z2) biplane defined by |z1| ≤ 1 and
|z2| ≤ 1. Continuous domain and discrete domain stabili-
ty results are related by the double bilinear transforma-
tion, si = (1 − zi)/(1 + zi), i = 1, 2. Applying these
stability conditions on the polynomial factors that pos-
sess the various magnitude symmetries, the conditions
on the denominator polynomials of 2-D filters are
obtained. These are listed in Table 7 on page 25. The inter-
ested reader may refer to [20] for the details and the
proof.

IIR Filter Design
The design of filters involves the determination of the fil-
ter coefficients such that the resulting magnitude
response approximates the ideal specifications to a cer-
tain tolerance. Design of 2-D digital filters is more compli-
cated than 1-D digital filters because the increase in
dimension brings about an exponential increase in the
number of coefficients. Fortunately, 2-D frequency
responses possess many types of symmetries and the
presence of these symmetries can be used to reduce the
complexity of the design. Symmetry present in the fre-
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Figure 11. Contour and 3-D magnitude plots of the opti-
mized fan filter with 4-fold rotational symmetry.
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quency response induces a relation among the filter coef-
ficients. This reduces the number of design parameters in
an optimization scheme, as well as the number of multi-
pliers in an implementation structure. Using the results
discussed so far, we now present the optimization based
design procedure for 2-D discrete-domain IIR filters with
symmetry in the magnitude response.

Design Steps:
1. Identify the type of symmetry in the magnitude

response specifications for the filter.
2. Assume a transfer function of the form:

H(z1, z2) = Q(z1, z2)

D(z1) · D(z2)
(44)

Select the numerator from the list of polynomials in
Table 6, such that it satisfies the required symmetry
identified in Step 1. The denominator is chosen to be
separable so that its stability can be easily assured.
This denominator possesses octagonal symmetry and

so satisfies quadrantal, diagonal, 4-fold rotational sym-
metries as well.

3. Select a suitable order for the filter such that the spec-
ifications can be met.

4. Choose a region in the (θ1, θ2) frequency plane to spec-
ify the desired magnitude response. For quadrantal,
diagonal and rotational symmetries, the region need
only be a 90◦ sector in the frequency plane. For octag-
onal symmetry, it need only be a 45◦ sector. Specify the
frequency sample points in this region using concen-
tric circles or rectangular grids.

5. Form an objective function to be minimized. This will
be based on the difference between the magnitude
response of the transfer function and the desired mag-
nitude response, at the selected frequency points. One
such objective function is:

J =
∑

k

∑

l

[F (θ1k, θ2l) − Fd(θ1k, θ2l)]
2

(45)

where F is the magnitude squared response and θ1k, θ2l

are the sample frequency points where the desired
response is specified. In this function, the variables to be
optimized are the coefficients of the transfer function. 

6. Use any minimization algorithm, such as those provid-
ed in Matlab, to minimize the objective function J and
obtain the optimal values for the filter coefficients. Ver-
ify that the filter specifications can be met with this set
of filter coefficients. If not, make adjustment to the
minimization algorithm and repeat the process.

7. Check the stability of the filter by finding the poles. Any
unstable pole can be stabilized by replacing it with its
inverse pole without affecting the magnitude response. 
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Figure 13. Contour and 3-D magnitude plots of the opti-
mized bandpass filter with octagonal symmetry.
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Example 4: Using the procedure just discussed, we now
design a bandpass filter with the filter specification
shown in Figure 6.

It can be seen that the filter possesses diagonal sym-
metry. So we select the numerator to be Q(z1, z2) =
Q(z2, z1), which is Case (a) in the list of polynomials
with diagonal symmetry in Table 6. We pick the order of

the filter to be 4×4. The following are the forms for the
numerator and denominator. It can be seen that the
numerator coefficient matrix has diagonal symmetry. As
a result, the number of variables to optimize is reduced
from 50 (25 for the numerator and 25 for the denomina-
tor) to 19 (15 for the numerator and 4 for the denomina-
tor), a 62% reduction.

z0
2 z1

2 z2
2 z3

2 z4
2

Q(z1, z2) =

z0
1

z1
1

z2
1

z3
1

z4
1




a00 a01 a02 a03 a04

a01 a11 a12 a13 a14

a02 a12 a22 a23 a24

a03 a13 a23 a33 a34

a04 a14 a24 a34 a44




(46)

and 

D(zi) = b0 + b1zi + b2z2
i + b3z3

i + z4
i , i = 1, 2

We use the “lsqnonlin” routine in Matlab 5.3’s Optimiza-
tion Toolbox to minimize the objective function. Because
of symmetry, we need only specify the desired response
in a reduced region (90◦ sector) in the frequency plane.
The transfer function coefficients of the optimized filter
are listed on page 23, with the contour and 3-D magnitude
plots given in Figure 7 on page 12. We verified that the fil-
ter is stable and meets the specification.
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Figure 15. Contour and 3-D magnitude plots of the optimized FIR filter with 4-fold rotational symmetry.
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a00 = 0.05691572886174

a01 = −0.02461862190217

a02 = 0.00986568924226

a03 = −0.01034804473379

a04 = 0.05820287661798

a11 = −0.02118017629239

a12 = −0.00404160157329

a13 = 0.03303916563349

a14 = −0.01033357674522

a22 = 0.00255022502754

a23 = −0.00398097317269

a24 = 0.00985123577827

a33 = −0.02118784417373

a34 = −0.02462035270181

a44 = 0.05691802180139

b0 = 0.45583704915947

b1 = −0.09763672454601

b2 = 0.87533799314168

b3 = −0.03923759607499

Other types of filters can be designed using the same
procedure. The following are some more examples.

Example 5: The filter specification in Figure 8 on page 13
possesses quadrantal symmetry. So we select the transfer
function numerator to be
Q1(z1, z2 + z−1

2 ) · Q2(z1 + z−1
1 , z2). This is the product of

Case (a) and (b) in the list of polynomials with quadrantal

symmetry in Table 6. The filter order is chosen to be 4 × 4.
The transfer function can be expressed as:

The following are the optimized filter coefficients.
Because of the quadrantal symmetry constraints, the
number of independent variables to optimize is reduced
from 50 to 16 (12 for the numerator and 4 for the denom-
inator), a 68% reduction. The resulting contour and 3-D
plots are shown in Figure 9 on page 13.

a00 = −0.36223343641959

a10 = 0.73781886914067

a20 = −0.35115585228984

a01 = 0.18001689678736

a11 = −0.23263738256684

a21 = 0.18813447360982

b00 = 0.49109027165487

b01 = 0.31981445338169

b02 = 0.49120885907429

b10 = −0.11409694648059

b11 = −0.38504269416613

b12 = −0.11398910827760

d0 = −0.02550110734351

d1 = −0.01599046367101

d2 = 0.37661874629072

d3 = −1.06746935205100

Example 6: It can be observed that the filter specification
in Figure 10 on page 20 possesses 4-fold (90◦) rotational
symmetry. So, we select the transfer function numerator
to be Q(z1, z2) · Q(z2, z−1

1 ), which is Case (d) for polyno-
mials with 4-fold rotational symmetry in Table 6. The fil-
ter order is chosen to be 5×5 and the transfer function
can be written as:

H(z)

=
Q1

(
z1, z2 + z−1

2

)
· Q2

(
z1 + z−1

1 , z2

)
D(z1) · D(z2)

=

(
2∑

m=0

1∑
n=0

amn · zm
1 ·

(
z2 + z−1

2

)n
)

·
(

1∑
m=0

2∑
n=0

bmn ·
(
z1 + z−1

1

)m · zn
2

)
(

z4
1 +

3∑
i=0

dizi
1

)
·
(

z4
2 +

3∑
i=0

dizi
2

)

= 0

= 0.5
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Figure 17. Octagonally symmetrical component of
response.



H(z) = Q(z1, z2) · Q
(
z2, z−1

1 )

D(z1
) · D(z2)

=

(
4∑

m=0

1∑
n=0

amn zm
1 zn

2

)
·
(

4∑
m=0

1∑
n=0

amn zm
2 z−n

1

)
(

z5
1 +

4∑
i=0

d i zi
1

)
·
(

z5
2 +

4∑
i=0

d i zi
2

)

The following are the optimized filter coefficients. Here, the
number of independent variables to optimize is reduced
from 72 to 15 (10 for the numerator and 5 for the denomi-
nator), a 79% reduction. The resulting contour and 3-D per-
spective plots are shown in Figure 11 on page 20.

a00 = 0.20294324476412

a01 = −0.48163632801449

a10 = 0.36932528231741

a11 = 0.18286723039587

a20 = −0.60107454130023

a21 = 0.57969763481886

a30 = −0.08314333950507

a31 = −0.32680233587436

a40 = 0.12928331110133

a41 = −0.02087010625653

d0 = 0.03480848557051

d1 = −0.34376565481538

d2 = 0.76070962863907

d3 = −0.08613899671423

d4 = −1.31455055755094

Example 7: In this example, we are required to design a
filter to meet the specifications given in Figure 12 on
page 20.

It can be seen that the response possesses octagonal
symmetry. So using Table 6 and assuming the filter order
to be 6 × 6, we can write the transfer function as: 

The transfer function numerator chosen is Case (b) in the
list of polynomials with octagonal symmetry.

Here, the advantage of employing the symmetry con-
straints is that the number of independent coefficients to
optimize is reduced from 98 to 16 (10 for the numerator
and 6 for the denominator), an 84% reduction. Also,
because of octagonal symmetry, the optimization need
only be done in a reduced 45◦ degree sector in the fre-
quency plane, which gives further reduction in computa-
tional time. The optimized filter coefficients are shown
below. The contour and 3-D plots of the optimized filter
are shown in Figure 13 on page 21.

a00 = −0.02676667082778

a01 = −0.30824801305310

a02 = −0.61338664353594

a03 = −0.54784348150223

a04 = −0.23052991083493

a10 = −0.08712047342727

a11 = 0.10230094916767

a12 = 0.44881705473037

a13 = 0.53311155984782

a14 = 0.28348672960777

d0 = 0.07858008457571

d1 = −0.10704620692704

d2 = 0.66811506285393

d3 = −0.19413076009780

d4 = 1.15029323700482

d5 = −0.09513351068716
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response.

H(z) =
Q

(
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1 , z2

)
· Q
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2 , z1

)
D(z1) · D(z2)

=
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4∑
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Continuous domain Discrete domain

Quadrantal Symmetry Quadrantal Symmetry
D (s1, s2) = D1 (s1) · D2 (s2) D (z1, z2) = D1 (z1) · D2 (z2)

where D1 and D2 are stable 1-D polynomials. where D1 and D2 are stable 1-D polynomials.

Diagonal Symmetry Diagonal Symmetry
D(s1, s2) = D(s2, s1) where D is stable. D(z1, z2) = D(z2, z1) where D is stable.

Four-Fold (90◦) Rotational Symmetry Four-Fold (90◦) Rotational Symmetry
D (s1, s2) = D1 (s1) · D1 (s2) D (z1, z2) = D1 (z1) · D1 (z2)

where D1 is a stable 1-D polynomial. where D1 is a stable 1-D polynomial.

Octagonal Symmetry Octagonal Symmetry
D (s1, s2) = D1 (s1) · D1 (s2) D (z1, z2) = D1 (z1) · D1 (z2)

where D1 is a stable 1-D polynomial. where D1 is a stable 1-D polynomial.

Table 7. 
Polynomial factors possessing symmetry and stability.
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Figure 19. Contour and 3-D plots of the symmetric component.

FIR Filter Design
Just like for IIR filters, symmetry can also be used to
reduce the complexity in the design of 2-D finite impulse
response (FIR) filters. The transfer function of a 2-D FIR
filter has the form 

∑

m

∑

n
hmn · zm

1 · zn
2 , where the coeffi-

cients hmn are the impulse response samples. An FIR filter
can be designed to possess linear phase which makes it
attractive in certain applications. However, the disadvan-
tage is that it often requires a much higher filter order to
satisfy the same specification compared to an IIR filter. 

In the following, we present an FIR design example uti-
lizing symmetry. We use basically the same design steps
presented previously for IIR filters, except that step 7 is
not needed here since an FIR filter is always stable.

Example 8: The filter specification shown in Figure 14 on
page 21 possesses 4-fold (90◦) rotational symmetry. So,
using Table 6, we write the filter transfer function as:

H(z1, z2) =
{Q1(x1, x2) + y1y2 · (x1 − x2) · Q2(x1, x2)} · zα

1 · zα
2 (47)

where Qk(x1, x2) = Qk(x2, x1) for k = 1, 2.
This is Case (a) in the polynomials with rotational

symmetry. (The zα
1 and zα

2 factors are included to ensure
the polynomial nature of H(z1, z2)). The polynomial in
(47) is the result of the symmetry condition
H(z1, z2) = H(z−1

2 , z1) · zN
2 . Consequently, the coeffi-

cients have to satisfy the condition hmn = hn,N−m, which



means that the coefficient matrix has to possess 4-fold
(90◦) rotational symmetry. The coefficient matrix is
shown below for a filter of impulse response (coefficient)
size of 7×7. It can be seen that only the boxed coefficients
are independent, and the other coefficients can be
obtained by rotating the boxed coefficients in steps of 90◦

around the mid-point of the whole matrix. 

Because of the symmetry constraint, the number of inde-
pendent coefficients is 13, a 73% reduction from the original
49. The optimized filter coefficients are shown below and the
resulting filter response is shown in Figure 15 on page 22.

a00 = −6.2016 × 10−3

a01 = −52.534 × 10−3

a02 = 45.586 × 10−3

a03 = 7.3391 × 10−3

a10 = 23.106 × 10−3

a11 = −32.25 × 10−3

a12 = 66.891 × 10−3

a13 = 52.406 × 10−3

a20 = −13.519 × 10−3

a21 = −78.678 × 10−3

a22 = −68.031 × 10−3

a23 = 49.386 × 10−3

a33 = 0.23983

It is to be noted that the choice of transfer function
here results in a filter with linear phase. This is because
on substituting zi = e− jθi into the transfer function, we get 

H(θ1, θ2) = {Q1(cos θ1, cos θ2) + sin θ1 · sin θ2

× (cos θ1 − cos θ2) · Q2(cos θ1, cos θ2)}
× e− jα·θ1 · e− jα·θ2

The expression {Q1(cos θ1, cos θ2) + sin θ1 · sin θ2·
(cos θ1 − cos θ2) · Q2(cos θ1, cos θ2)} is real. Thus,
�H(θ1, θ2) = −α · (θ1 + θ2) + k · π , where k is an integer,
and so the phase is linear.

Symmetrical Decomposition and Transformation

Among the methods used in the design of 2-D FIR filters,
optimization, window techniques, and transformation are
the most popular. In this section, we first present tech-
niques to improve the efficiency and versatility of the
transformation method by making use of the symmetry
properties of the transformation functions. After that, we
describe a procedure to extend the application of sym-
metry properties to the design of filters that do not pos-
sess identifiable symmetry in their frequency responses.
The approach that is followed is to decompose the given
specification into a number of components each possess-
ing some form of symmetry.

1-D to 2-D Transformation
Among the various methods available for the design of 
2-D FIR filters, transformation method has been found to
be the simplest and most efficient one for many specifi-
cations. Introduced by McClellan in 1973, this method
has been studied extensively by a number of research
workers in this field. Here, we present techniques to
improve the efficiency and versatility of this method by
making use of the symmetry properties of transforma-
tion functions.

Let G(u) represent the frequency response of a 1-D FIR 
filter. Then G(u) can be written as

G(u) = g(0) +
N∑

n=1

2 · g(n) · cos(nu) (48)
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Name of Symmetry Condition on Symmetry Condition on Antisymmetry

Quadrantal bmn = 0 akl = 0

Diagonal akl = alk akl = −alk

bmn = bnm bmn = −bnm

Four-Fold (90◦) rotational akl = alk akl = −alk

bmn = −bnm bmn = bnm

Octagonal akl = alk i) akl = 0, bmn = bnm

bmn = 0 ii) akl = −alk, bmn = 0
iii) akl = 0, bmn = −bnm

Table 8. 
Coefficient conditions for various symmetries on polynomial P (θ)in (52).

z0
2 z1

2 z2
2 z3

2 z4
2 z5

2 z6
2

H(z1, z2) =

z0
1

z1
1

z2
1

z3
1

z4
1

z5
1

z6
1




a00 a01 a02 a03 a20 a10 a00

a10 a11 a12 a13 a21 a11 a01

a20 a21 a22 a23 a22 a12 a02

a03 a13 a23 a33 a23 a13 a03

a02 a12 a22 a23 a22 a21 a20

a01 a11 a21 a13 a12 a11 a10

a00 a10 a20 a03 a02 a01 a00






where g(n) is the impulse response sequence of the 1-D
FIR filter. Expressing cos(nu) in terms of cos(u), we can
rewrite (48) as

G(u) =
N∑

n=0

bn · (cosu)n = Ĝ(cosu) (49)

The generalized McClellan transformation which con-
verts the 1-D zero phase FIR filter into a 2-D zero phase
FIR filter is given by

cosu = P(θ) = P(cos θ1, cos θ2, sin θ1, sin θ2) (50)

where P(θ) can be considered as the frequency response
function of a 2-D zero phase FIR filter. Substitution of (50)
in (49) gives a 2-D zero phase frequency response func-
tion as

H(θ) = Ĝ(P(θ)) = Ĥ(cos θ1, cos θ2, sin θ1, sin θ2) (51)

It may be easily verified that the response of H(θ) at a
point θ i is given by G(cos−1[P(θ i)]), i.e., the response of
G(u) at u = cos−1[P(θ i)]. This means that all those points
in the (θ1, θ2) plane where P(θ) = P(θ i), the response will
have a constant value and the line joining these points
will constitute a constant value contour. In other words,
the response of the 1-D function G(u) is carried over to
the 2-D plane by the transformation (50). The actual
response values of these contours are determined by
G(u). Very often, the specified 2-D response possesses
some form of symmetry in addition to being real, and the
utilization of this symmetry will reduce the complexity of
the filter design. 

Symmetry constraints on transformation functions
From the previous discussion on the generation of 2-D
functions using transformation functions, it should be
apparent that the symmetry properties of the generated 2-
D function will depend on the symmetry properties of the
1-D base function G(u) and the 2-D transformation function
P(θ). We will now investigate the natures of G(u) and P(θ)

such that the generated function H(θ) possesses a desired
T -symmetry or T -antisymmetry. In this context, we state a
number of theorems that outline these properties.

Theorem 7: If P(θ) possesses a T -symmetry, then
H(θ) = Ĝ(P(θ)) possesses the same T -symmetry inde-
pendent of the nature of G(u).

Theorem 8: If P(θ) possesses a T -antisymmetry and
G(u) = G(π − u), i.e., G(u) possesses a reflection symme-
try about u = π/2, then H(θ) = Ĝ(P(θ)) possesses the T -
symmetry. It is to be noted that G(u) = G(π − u) if it can 
be expressed as G(u) = ∑N

n=0 cn(cosu)2n.

Theorem 9: If P(θ) possesses a T -antisymmetry and
G(u) = −G(π − u), i.e., G(u) possesses a reflection anti-
symmetry about u = π/2, then H(θ) = Ĝ(P(θ)) possesses
the T -antisymmetry. It is to be noted that G(u) =
−G(π − u) if it can be written as G(u) =∑N

n=0 cn(cosu)2n+1.
The above three theorems give sufficient conditions

for H(θ) to possess T -symmetry or T -antisymmetry.
Therefore, based on the symmetry of the desired
response, one can choose suitable forms of P(θ) and
G(u). The following is an example to illustrate the appli-
cation of Theorem 8.

Example 9: Let G(u)= 1 − 2 · (cosu)2 and P(θ)=
0.5 cos θ1 − 0.5 cos θ2. Then 

H(θ) = 1 − 2 · (0.5 cos θ1 − 0.5 cos θ2)
2

= 1 − 0.5 cos2 θ1 − 0.5 cos2 θ2 + cos θ1 cos θ2

It is verified that G(u) = G(π − u) and P(θ) possesses
x1 = x2 diagonal reflection antisymmetry and as expected
H(θ) possesses x1 = x2 diagonal reflection symmetry.

We next consider the constraints on P(θ) explicitly for
some types of T -symmetries and antisymmetries. We
note that the zero phase transformation function P(θ) can
be written as:

P(θ) =
K∑

k=0

L∑

l=0

akl · (cos θ1)
k · (cos θ2)

l

+ sin θ1 · sin θ2 ·
M∑

m=0

N∑

n=0

bmn · (cos θ1)
m · (cos θ2)

n

(52)

Different types of symmetries and antisymmetries impose
constraints on the coefficients akl and bmn. These con-
straints are listed in Table 8 on page 26.

It often happens that a desired specification possesses
more than one form of symmetry. In this case, applying
Theorems 7 to 9, one can develop the properties of P(θ)

and G(u) such that the generated function H(θ) possess-
es the required symmetries. Along these lines, the follow-
ing two theorems present useful results.

Theorem 10: For a transformed function H(θ) to possess
Tk-identity, k = 1, . . . ,n, symmetries, either of the follow-
ing choices may be made

(i) P(θ) possesses T1, T2, . . . , Tn identity symmetries
and no constraint is placed on G(u).

or

(ii) G(u) = G(π − u) and P(θ) possesses T1, T2, . . . , Tn

identity or antisymmetries, i.e., each Tk symmetry
can be either identity or antisymmetry.
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Theorem 11: For a transformed function H(θ) to possess
Tk-identity/ anti- symmetry, k = 1, . . . ,n, (some or all of
them can be antisymmetries), the following choice will
meet the requirement: P(θ) possesses the designated Tk-
identity/antisymmetries of H(θ) for k = 1, . . . ,n, and
G(u) = −G(π − u).

Application of the symmetry constraints
The different constraints established for the base and
transformation functions will find their application in the
proper choice of G(u) and P(θ). This proper choice in
turn will lead to a reduction in the number of unknowns
to be determined by the design methods such as opti-
mization. In this connection, Table 8 will help one to
choose a proper P(θ). For example, if 4-fold rotational
symmetry is desired for P(θ), we have from Table 8,

akl = alk and bmn = −bnm. In the lowest order case, we can
write P(θ) as

P(θ) = a + b · (cos θ1 + cos θ2) + c · cos θ1 · cos θ2

+ d · sin θ1 · sin θ2 · (cos θ1 − cos θ2)

where a, b, c, and d are to be determined to give the nec-
essary contour shapes. This choice thus results in a
reduction of the number of unknowns from 8 to 4.

Symmetrical Decomposition
If the specified 2-D response does not possess any eas-
ily identifiable symmetry, then the above properties
cannot be made use of. A solution to this problem is to
decompose the given specification into a number of
components each having some form of symmetry [27,
28]. As the complexity of the design of the components
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with symmetry is lower than that of the original specifi-
cation, the design based on symmetric decomposition
is more efficient than the conventional design. The
design procedure then consists of the following three
steps.

1. The given 2-D specification is decomposed into a num-
ber of symmetrical components such as quadrantal
symmetric and antisymmetric components, diagonal
symmetric and antisymmetric components, etc.

2. Each symmetrical component is designed separately
using a design procedure such that the symmetry
properties are used effectively.

3. The designed filters corresponding to the different
components are combined either in the transfer func-
tion level or in the implementation level to obtain the
total filter.

We will next consider the steps 1 and 2 in more
detail.

Decomposition technique
To utilize the symmetry properties discussed, a function
f(x) needs to have a symmetry or an antisymmetry with
respect to an operation T . When f(x) does not meet this
requirement, we can still employ symmetry properties
in their design if we are able to decompose f(x) into T -
symmetric and T -antisymmetric components. We will
next consider under what conditions such a decomposi-
tion exists and how a given f(x) can be decomposed.

Let us assume that with respect to a symmetry opera-
tion T , f(x) is decomposable as

f(x) = f+(x) + f−(x) (53)

where

f+(x) = f+(T[x]), (symmetric component) (54)

and

f−(x) = − f−(T[x]), (antisymmetric component) (55)

then

f(T[x]) = f+(T[x]) + f−(T[x]) = f+(x) − f−(x) (56)

Now from (53) and (56) we can find f+(x) and f−(x) as

f+(x) = 1
2 · {f(x) + f(T[x])}

and

f−(x) = 1
2 · {f(x) − f(T[x])}

Now to verify that such a decomposition is possible, f+(x)

and f−(x) should satisfy (54) and (55), i.e.,

f+(T[x]) = 1
2 · {f(T[x]) + f(T[T[x]])}

= 1
2 · {f(T[x]) + f(T2[x])}

As f+(x) = f+(T[x]),

1
2 · {f(x) + f(T[x])} = 1

2 · {f(T[x]) + f(T2[x])},
i.e.,f(x) = f(T2[x]) (57)

Similarly substituting

f−(T[x]) = 1
2 · {f(T[x]) − f(T2[x])}

in (55) we get

1
2 · {f(x) − f(T[x])} = 1

2 · {f(T2[x]) − f(T[x])}
i.e., f(x) = f(T2[x]) (58)

The conditions (57) and (58) may be satisfied if and only
if either i) T2 is an identity operation or ii) f(x) has T2-iden-
tity  symmetry. This can be stated in the form of a theorem.

Theorem 12: With respect to a symmetry operation T ,
f(x) can be decomposed into two components as

f(x) = f+(x) + f−(x)

where f+(x) possesses T -identity symmetry and f−(x)

possesses T -antisymmetry if and only if either T is a 
2-cyclic operation or f(x) possesses T2-identity symme-
try. Then the components are given by

[
f+(x)

f−(x)

]
= 1

2

[
1 1
1 −1

] [
f(x)

f(T[x])

]

The following are examples to illustrate this.

Example 10: Let f(x) = 1 + 2x1 + 3x2 + 4x1x2 and
T = T1 =

[ 1 0
0 −1

]
. From “Nature of T-Operations,” we

know that T1 represents reflection about the x1-axis, a 2-
cyclic operation. So using Theorem 12, we can decom-
pose f(x) into f+(x) = 1 + 2x1 and f−(x) = 3x2 + 4x1 x2 ,
where f+(x) and f−(x) possess T1-identity symmetry and
T1 antisymmetry respectively.

Example 11: Let f(x) = 1 + 2x1x2 + 3x2
1 + 4x2

2 and
T = T6 =

[
0 −1
1 0

]
. T6 represents 90◦ anti-clockwise rota-

tion about the origin, which is a 4-cyclic operation and
not 2-cyclic. So, in order to apply Theorem 12, f(x) needs
to possess T2

6 -identity symmetry. It is easy to verify 
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that f(T2
6 [x]) = f(−x) = 1 + 2x1x2 + 3x2

1 + 4x2
2 = f(x),

hence decomposition is possible. Using Theorem 12, 
we get f+(x) = 1 + 3.5x2

1 + 3.5x2
2 and f−(x) =

2x1x2 − 0.5x2
1 + 0.5x2

2 , where f+(x) and f−(x) possess T6-
identity symmetry and T6 antisymmetry respectively.

Extending the above technique, one can decompose f(x)

into four components such that each component possesses
symmetry or antisymmetry with respect to two symmetry
operations. This is explained in the next theorem.

Theorem 13: f(x) can be decomposed into four compo-
nents as

f(x) = f++(x) + f+−(x) + f−+(x) + f−−(x)

where

f++(x) possesses Ta-symmetry and Tb-symmetry
f+−(x) possesses Ta-symmetry and Tb-antisymmetry
f−+(x) possesses Ta-antisymmetry and Tb-symmetry
f−−(x) possesses Ta-antisymmetry and Tb-antisymmetry

if Ta and Tb are 2-cyclic and TaTb = TbTa. The components
are then given by




f++(x)

f+−(x)

f−+(x)

f−−(x)


 = 1

4




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ·




f(x)

f(Ta[x])
f(Tb[x])

f(Ta[Tb[x]])




The following example illustrates the application of the
above theorem.

Example 12: Let f(x) = 1 + 2x1 + 3x2 + 4x1x2 , Ta =
T3 =

[ 0 1
1 0

]
, and Tb = T4 =

[ 0 −1
−1 0

]
. From “The Nature of

T-Operations,” we know that Ta is reflection about
x1 = x2 diagonal, and Tb is reflection about x1 = −x2

diagonal, both of which are 2-cyclic operations. Also
TaTb = TbTa. So we can use Theorem 13 to obtain:

f++(x) = 1 + 4x1x2

f+−(x) = 2.5x2 + 2.5x1

f−+(x) = 0.5x2 − 0.5x1

f−−(x) = 0

One can extend the above technique to decompose a
given response into eight or larger number of components
if the symmetry operations satisfy certain conditions. 

In the following we will consider the application of
decomposition to 2-D filter design.

FIR Filter Design Based on Decomposition
In the design of filters using decomposition, the given
frequency response specification is decomposed into a
number of symmetrical and antisymmetrical compo-

nents. Each component can then be designed using any
of the general approximation methods. Here, we employ
the optimization based procedure for this purpose. It is
expected that symmetrical decomposition will result in
a substantial reduction in the complexity in the opti-
mization based procedure for the following reasons:

(i) The complexity of an optimization scheme is general-
ly proportional to the square of the number of param-
eters to be optimized.

(ii) The number of parameters to be optimized for each
component is much smaller than that for the whole
filter and the total number of parameters of all the
components together for a given order filter is no
more than that for the undecomposed scheme.

It is to be noted that even if the original filter specification
possesses symmetry, decomposition can still be applied
and this will also result in reduction in the complexity of
the design.

We next consider an example to illustrate the method.

Example 13: The filter specification corresponding to a
fan filter is given by

Pd(θ) = 1, |θ1| ≥ 3|θ2|, −π ≤ θi ≤ π, i = 1, 2
= 0, |θ1| < 3|θ2|, −π ≤ θi ≤ π, i = 1, 2

This response (shown in Figure 16 on page 22) possesses
quadrantal symmetry. 

Here, we shall decompose this response into two com-
ponents: one having symmetry about the x1 = x2 diago-
nal, and the other having antisymmetry about the same
diagonal. Thus, the T operation used here is:

T = T3 =
[ 0 1

1 0

]

Applying Theorem 12, we get:

Pd(θ) = Pd+(θ) + Pd−(θ)

where Pd+(θ1, θ2) = 1
2 · [Pd(θ1, θ2) + P(θ2, θ1)]

and Pd−(θ1, θ2) = 1
2 · [Pd(θ1, θ2) − P(θ2, θ1)].

Using the above decomposition, we obtain (for
−π ≤ θi ≤ π, i = 1, 2):

Pd+(θ) = 0.5, |θ1| ≥ 3|θ2| ∪ |θ2| ≥ 3|θ1|
= 0, |θ1| < 3|θ2| ∩ |θ2| < 3|θ1|

Pd−(θ) = 0.5, |θ1| ≥ 3|θ2|
= −0.5, |θ2| ≥ 3|θ1|
= 0, |θ1| < 3|θ2| ∩ |θ2| < 3|θ1|
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The responses of Pd+(θ) and Pd−(θ) are shown in Figures
17 and 18, respectively, on pages 23 and 24. Pd+(θ) pos-
sesses octagonal symmetry and Pd−(θ) possesses
octagonal antisymmetry. We next design these two
components using optimization.

For Pd+(θ), which has octagonal symmetry, we know
from Table 8 that akl = alk and bmn = 0. So assuming a
impulse response size of 5×5 for our filter, its frequency
response function will be:

P+(θ1, θ2) =
2∑

k=0

2∑

l=0

akl · (cos θ1)
k · (cos θ2)

l

with akl = alk.

Hence, there are 6 independent coefficients here. These
coefficients are determined by minimizing the objective
function:

J+ =
∑∑

[P+(θ1, θ2) − Pd+(θ1, θ2)]2

The optimization required 129 function evaluations. The
following are the optimized coefficients. The contour and
3-D plots are shown in Figure 19 on page 25.

a00 = −0.07304

a01 = 0.1184

a02 = 0.4669

a10 = 0.1184

a11 = −0.2486

a12 = −0.02676

a20 = 0.4669

a21 = −0.02676

a22 = −0.5287

Next, we design the component, Pd−(θ), which pos-
sesses octagonal antisymmetry of type 2 in Table 8. So,
the frequency response function will be:

P−(θ1, θ2) =
2∑

k=0

2∑

l=0

αkl · (cos θ1)
k · (cos θ2)

l,

with αkl = −αlk and αkk = 0

Here there are 3 independent parameters, which are
determined by minimizing the objective function

J− =
∑∑

[P−(θ1, θ2) − Pd−(θ1, θ2)]2

The optimization required 60 function evaluations. The
optimized parameters are given below and the resulting
contour and 3-D plots are shown in Figure 20 on page 28.

a00 = 0

a01 = 0.3612

a02 = 0.1949

a10 = −0.3612

a11 = 0

a12 = 0.09579

a20 = −0.1949

a21 = −0.09579

a22 = 0

The total frequency response function is obtained by
adding P+(θ1, θ2) and P−(θ1, θ2), i.e.,

P(θ1, θ2) = P+(θ1, θ2) + P−(θ1, θ2)

The resulting contour and 3-D plots are given in 
Figure 21 on page 28.

So, by using decomposition, the design required
129 + 60 = 189 function evaluations to determine a total of
9 independent parameters. In comparison, the design with-
out decomposition is found to require 246 function evalua-
tions to determine 9 independent parameters. So the
advantage of using decomposition is clearly shown in the
example. 

Conclusion

The objective of this paper is to present the various
results available in the literature on the symmetries and
their applications for two-dimensional signals and sys-
tems. Specifically, a unified way of expressing the various
commonly occurring symmetries is first presented and
then the interdependencies resulting from various sym-
metries on signals and their Fourier transforms are devel-
oped using the unified symmetry representation. The
application of symmetry conditions to speed up the fast
Fourier transform algorithms is then discussed. Analysis
of the magnitude responses of filters shows that utiliza-
tion of their symmetries will considerably simplify the
complexity of the design and implementation of these fil-
ters. Finally, techniques for the application of symmetry
results even for functions that do not possess symmetries
by using symmetrical decomposition are presented. The
various results and techniques presented in this paper
show that a knowledge and application of the various
symmetries in the responses of 2-D systems will consid-
erably reduce the complexity of the design and imple-
mentation of these systems. Symmetry with complex
polynomials will also provide similar advantage. Further,
it may be noted that symmetry results can be extended to
three and higher dimensional systems [29, 30]. Although
the paper dealt with the symmetry in magnitude  func-
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tion, similar advantages can be obtained by identifying
phase symmetries. Due to lack of space these are not pre-
sented in this paper. The more recent research in the
symmetry theory and its application to 2-D filter design is
through the use of the delta operator. The main advan-
tage with regard to the theory is that it unifies the results
of 2-D analog and discrete-time case. From the point of
view of design, there is a major advantage in the coeffi-
cient sensitivity for narrowband filters [31–36].
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