Atmel Studio 7 Part I

Advanced Developer Software

Deciding Development Software:

- Application Dependent:
 - Embedded Systems
 - Front end GUI
 - Databases
 - **Al**
 - PCB fabrication
 - Simulation
- Vendor Dependent:
 - ARM
 - Atmel
 - Etc.

Arduino IDE

• Pros:

- Light Weight
- Works "out of the box"
- Comes with examples and samples to help get started
- Easy to configure with Hardware
- Open Source
- Add-ons for additional hardware
 - Ada Fruit
 - Sparkfun
 - Etc
- Cons:
 - Not an engineer's tool
 - Anything more complex than a Hobbyist's breadboard device can be hard to manage

Atmel Studios 7

Pros:

- More professional level tools
 - Autocomplete
 - Project hierarchy
 - Simulator
 - In-System Programming and In-Circuit Emulator (ICE) support

Cons:

- Much more bulky
 - Built on top of a Microsoft Visual Studios Shell. (~3GB in size)
- Another software to learn and feel familiar with.

Importing Arduino Script

Process:

- Make an Arduino script or take a blank one
- Go to "file" -> "New project" -> "import Arduino Script"
 - Pick the path of desired script and Arduino IDE install path.
 - Select Board type and Device type
 - For our projects these will either be "Leonardo" or "Lillypad USB"

New Project

▷ Recent - # 🗉 ρ. Sort by: Default Search Installed Templates (Ctrl+E) Installed Type: C/C++ GCC C ASF Board Project C/C++ C/C++ Creates an Atmel Studio project from Arduino sketch file. Creates two projects Assembler GCC C Executable Project C/C++ (Sketch, ArduinoCore). The Sketch project AtmelStudio Solution contains the sketch file and the GCC C Static Library Project C/C++ ArduinoCore project contains all the core, variant and any library files. GCC C++ Executable Project C/C++ GCC C++ Static Library Project C/C++ 00 ArduinoSketch6 Name: c:\users\thomas\Documents\Atmel Studio\7.0 Location: Browse... Create directory for solution Solution name: ArduinoSketch6 OK Cancel

×

?

Arduino Import

Create C++ project	t from Arduino sketch	×
Sketch File	C:\Program Files (x86)\Arduino_1_6_5\examples\03.Analog\AnalogInOutSerial\Ana	
Arduino IDE Path	C:\Program Files (x86)\Arduino_1_6_5	
Board	Arduino/Genuino Uno v	
Device	atmega328p v	
	Cancel Ok	

Hierarchy

Hierarchy Cont.

For Arduino projects the Hierarchy is important for showing two different things:

- Arduino Base Code
 - Looking into the base code is important for finding microcontroller specific defaults.
- Better Organize <u>your project source files</u>
 - Main Script
 - Headers/ Src.

Simulator

- Similar to AVR Studio 4's simulator, used in EE346, the Atmel Studio 7 simulator provides a quick method of verifying your code.
 - Go to "tools" as seen in the toolbar the select "debugger" -> "simulator"
 - Same as other simulators, utilize the stepping tools as needed.
 - Warning: Delays are not modeled by the simulator and therefore will not reflect actual timing within the target application.
 - Easier to set breakpoints than delays (comment out if possible).
 - Also Note: Serial.print commands inconsistent also (due to not having a port connection)
- Pin simulation
 - As opposed to software development, our simulators allow us to see IO register, General Purpose Registers, as well as PIN states (HIGH, LOW)
 - This gives us more flexibility to debug specific sections of the program.

💰 Arc	luinoTest - AtmelStudio		
File Ed	it View VAssistX ASF Project Build Debug Tools Window Help		
G -	💿 📅 - 🏥 🎦 - 🔄 🔛 🚰 🐰 🗗 🗂 🗇 - 오 - 🔚 🔍 🕨 Debug		₽1 (
<u>i</u> (14	= → II ▶ ↔ ‡ ? ‡ N T Hex 🄏 ā	📸 📩 🖂 🚽 🚧 ATmega328P	👔 No Tool 🍦
main.cpp	Sketch.cpp 🕘 😕 Data Visualizer		
Ioop	✓ → void loop()		
	<pre>/*Begining of Auto generated code by Atmel studio */ #include <arduino.h></arduino.h></pre>		
	/*End of auto generated code by Atmel studio */		
	<pre>//Beginning of Auto generated function prototypes by Atmel Studio //End of Auto generated function prototypes by Atmel Studio</pre>		
10	Evoid setup() {		
11	// nut your setun code here to run once:		

\delta ArduinoTest - Af	tmelStudio	
File Edit View	VAssistX ASF Project Build Debug Tools Window Help	
G - O 🏠 - 🖣	🗈 🎦 - 😋 💾 🍟 🙏 白 白 🗇 - 🥂 - 🔚 🔍 🕨 Debug 🛛 - Debug Browser - 👘 - 🍃	I F
	🕨 🖂 🐮 🖉 🙏 🔚 Hex 🎢 🗐 - 🗇 🖾 📖 🖄 👘 👘 🖓 - 📟 ATmega328P 🦹 Simulator -	
Atmel_/_lest* + X	main.cpp Sketch.cpp Data Visualizer	
Build	Configuration: N/A V Platform: N/A V	
Build Events		
Toolchain	Selected debugger/programmer	
Device	Selected debugger/programmer	
Tool*	Simulator ~	
Components		
Advanced		
	Programming settings	
	Erase entire chip *	
	Preserve EEPROM	
	Select Stimuli File for Simulator	
	Stimuli File	
	Activate stimuli when in breakmode from menu Debug->Execute Stimulifile, then continue execution	

Simulator operation:

- Red: setting breakpoints on the left margin of line numbers
- Blue: Memory and register inspector windows
 - Left to right: Disassembly, registers, Memory 1, Processor Status (SREG), IO
 - For our purposes, IO will be the primary concern
- Green: Simulator control
 - Left to right:
 - Add watch: look at variable address and value
 - Step into: look "into" function and step through.
 - Step over: execute function in its entirety (or until breakpoint/ inf. loop)
 - Step out: Done to leave a "step in"

Live Debugging

Atmel ICE programmer:

- Provides: ISP (in-system programmer), fuse settings, .hex- uploading, and bootloader configuration.
 - ISP enables a deeper level of simulator where the hardware is running while connected to the PC.
 - Use this to further understand complex problems and pin-point if it requires hardware or software changes.

Secondary Discussion: Bootstrap vs. Bootloader

- Bootloader:
 - Used on most (all) computers from embedded systems to desktop computers to ensure successful power-up sequence.
 - Bootloaders are hardware specific as they operate at a C/ assembly level to configure IO based on application
 - For example: Arduino uses a bootloader and on power-up it checks if the arduino IDE/ AVR dude is uploading code via serial connection.
 - Resides in FLASH program memory at specific allocated locations.
- Bootstrapping:
 - Used in applications that require an operating system.
 - The bootstrap ensures the kernel ("OS") is uncompressed and not corrupted before handing the device over to the OS.
 - Stored in non-volotile memory (FLASH, ROM, EEPROM)