 Arenas
[bookmark: _GoBack]Part D: Incorporate the archive into an AVR Studio project (Using an archive in AVR Studio)

OBJECTIVE
To focus on incorporating an archive of Arduino.cc core code into an AVR Studio project which will be the most portable way of using the Arduino.cc core code.
BACKGROUND/INFORMATION
Benefit: Fewer files to manage and easier to track individual contributions. Segregates application code from driver code. Makes source projects more modular and reusable.
Cons: Cannot debug source from the archive – is this really a bad thing? If you are programming via an API, either it works or it does not. If it does not – tell the person who wrote it; do not fix it in one place leaving others with potentially the same problem.
PROCEDURE
A new project was created in AVR Studio project using the AVR GCC as the project type, saved in the C drive or wherever it was preferred but being consistent with the other files too. It was giving an appropriate name, such as test_arduino saved in a folder without any initial file since a C++ project was created and not a C. In addition, the debug platform and device was chosen to be the ones that were going to be used, in this case AVR Simulator 2 and the ATMega328P.
[image:]
Figure 1: Project type, name and location of a new project in AVR Studio

1. Open the directory where the project was made and create 4 new folders
a. source – will contain the user generated source code files
b. output – where the compiler and linker will output
c. library – will contain the Arduino.cc core files
i. From the third tutorial, copy the lib_test_arduino.a and paste it in the library folder
d. docs – will contain the output generated by Doxygen if it is used
[image:]
Figure 2
2. Configure the project: Project Configuration Options
3. Change the general settings
a. Output file directory should be pointed to the output file that was created in step 4
b. Oscillator frequency of the Arduino is 16 MHz (16000000 Hz)
c. Optimization for debugging needs to be –O0
i. The code size will be large but this is the only way that the debugger can be used to produce appropriate steps when going through the code
[image:]
Figure 3
4. Include directories – point to the library and source folders that were created in step 4
[image:]
Figure 4
5. Libraries
a. Add the library folder to the project, now the archive file that it contains is seen below)
b. Add Library to the “Link with these Objects”

[image:]
Figure 5
6. Custom options
a. Click on –std=gnu99 and click edit
b. Change from gnu99 to c99 and Add
c. Verify that “Use AVR Toolchain” is selected and path points to the installed tools OK
[image:]
Figure 6
7. In AVR Studio, add the files to the project – Right click on Source Files and select “Add Existing Source File(s)” such as what was done in the first tutorial.
8. Add the necessary files – navigate into the library folder that contains all the files copied from the arduino\core\arduino
a. Change the file filter from Source Files(*.c; *.s) to All Files(*.*)
b. Select every .c and .cpp file and click “Open”
9. Right click on “Source Files” and choose “Create New Source File...”
a. Name the file ‘main.cpp.’ Most important is that the file extension is .cpp since a C++ file is being created
10. Include the main resource file and setup the program entrance
a. The main header that must be included is WProgram.h which will gather all core macros and functions.
b. init() – this is an Arduino function that is used to configure timiming routines
c. setup() – this can be omitted or implemented. If it is used enter all setup code that is to be called once otherwise just list the function calls in its place.
d. loop() – again this can be omitted or implemented. If it used – all repetiitous code is to be placed in the function below. Otherwise just list the code within the while(1) brackets
[image:]
Figure 7: Result when using the archive
CONCLUSION
It was learned how to incorporate an archive into a project in AVR Studio. Even though it was similar to the first part of this lab, some steps were missing in the original procedure. The core files from the arduino needed to pasted to the library since they were not included in the archive, only the header files were. The core files were needed in order for the pins to be read, if not errors would occur when trying to write to the Arduino.
1

image3.png

image4.png

image5.png

image6.png

image7.png

image1.png

image2.png

