

Lab 0B: C++ and AVR Studio
[bookmark: _GoBack]
EE444 – Microprocessor Based System Design
CSULB
Esmeralda Arenas
03/27/13

Part A: Integrating C++ in AVR Studio
ABSTRACT
Instead of building an assembler project in AVR Studio, an AVR-GCC was built which gets a C/C++ code to run in AVR and using the AVR Toolchain. A C/C++ project in AVR can be built if all the software is installed in the correct directories. Since a C project can be programmed, it can be run, simulated and breakpoints added in AVR Studio.
OBJECTIVE
To get a C++ project up and running that incorporates the Arduino.cc core functionality. It allows the Arduino core files and other Arduino community library files to be debugged and simulated.
SOFTWARE REQUIREMENTS
All software is preferably to be put in one same folder in order to find files easily. It must have Atmel GCC Toolchain[footnoteRef:1] in the AVR tools folder, the AVR Studio 4 IDE, WinAVR installed on the computer and the Arduino IDE (arduino-022). [1: http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORWINDOWS.aspx]

Note: If using Windows Vista and a ‘sync_with_child’ error appears or similar, an executable file in WinAVR needs to be modified. Specifically the ‘mysys-01.dll’ needs to be change.
PROCEDURE
A new project was created in AVR Studio project using the AVR GCC as the project type, saved in the C drive or wherever it was preferred but being consistent with the other files too. It was giving an appropriate name, such as test_arduino saved in a folder without any initial file since a C++ project was created and not a C. In addition, the debug platform and device was chosen to be the ones that were going to be used, in this case AVR Simulator 2 and the ATMega328P.
[image:]
Figure 1: Project type, name and location of a new project in AVR Studio
[image:]
Figure 2: Choosing simulator and device. Select the Simulator and micro-controller that is on your Arduino, click Finish.
The directory was open where the project was made and four new folders were created. The four new folders were as follow: source, output, library and docs. The source contained the user generated source code files. Output contained where the compiler and linker will spew. Library where it will contain the Arduino.cc core files. Docs contained the output generated by Doxygen if it was used.
[image:]
Figure 3: Four folders created inside the project folder.
The project was configured from: Project Configuration Options. The general settings were to be changed. Output file directory was pointed to the output file that was created initially. For example, c:\AtmelProjects\test_arduino\output. Oscillator frequency of the Arduino was 16 MHz (16000000 Hz). The Optimization for debugging needed to be changed from –Os to –O0. The code size will be large but this was the only way that the debugger can be used to produce appropriate steps when going through the code
 [image:]
Figure 4: Project Options
Under the configuration options, there was ‘Include Directories’ that needed to be changed or added. It pointed to the library and source folders that were created at the beginning by which a new insert were created in for the folder, as shown to the figure below:
[image:]
Figure 5: Directories pointing to the same folders created earlier.
The ‘Custom Options’ were customized accordingly: –std=gnu99 was clicked and edited to be from gnu99 to c99, it was added, verified that “Use AVR Toolchain” was selected and that its path pointed to the installed tools.
[image:]
Figure 6: Custom Options and external tools
When the Arduino.cc core files were to be imported, the location had to be browsed, for example to .\arduino-0xx\hardware\arduino\cores\arduino. The files were to be selected from this location and copied to the project’s library, in this case test_arduino\library. In addition, the main.cpp file was erased since a new one would be created later on.
[image:]
Figure 7: The cores files to be obtained and saved to the library located in the project folder.
[image:]
Figure 8: The main file will bedeleted since a new one will be created in the studio.

In AVR Studio, the files were added to the project. The ‘Source Files’ was right-clicked and “Add Existing Source File(s)” was selected. Adding the necessary files – navigate into the library folder that contains all the files copied from the arduino core files. (.\test_arduino\library). The file filter was changed from Source Files(*.c; *.s) to All Files(*.*) and every .c and .cpp file were selected.
[image:]
Figure 9: Adding files
[image:]
Figure 10: Selecting every .c and .cpp file to be added to the avr project.
All the core files from the arduino.cc project are part of the project and the main source file was created. Under sources, it was right-clicked to “Create New Source File...” in order to add a file named ‘main.cpp.’ Most important object was that the file extension was a .cpp since a C++ file was created instead of a C file. The filed needed to be saved in the source folder of the project in which case the location was browsed to the “source” folder.
[image:]
Figure 11: Creating a new source file for the main program.
[image:]
Figure12 a: Source file
[image:]
Figure 12b: Source file location

The main resource file was included and the program entrance was setup:
a. The main header that must be included is WProgram.h which will gather all core macros and functions.
b. init() – this is an Arduino function that is used to configure timiming routines
c. setup() – this can be omitted or implemented. If it is used enter all setup code that is to be called once otherwise just list the function calls in its place.
d. loop() – again this can be omitted or implemented. If it used – all repetiitous code is to be placed in the function below. Otherwise just list the code within the while(1) brackets
[image:]
Figure 13: Code to be in the main source file.
When the code was compiled, nine errors occurred that needed to be corrected. The easiest way to find the errors was to click on them and let the program showed them where they were.
[image:]
Figure 14: Errors that occurred when debugging
[image:]
Figure 15: If clicked on, program directs where the errors are located. The errors are due to a type-mismatch. This can be corrected by typecasting the variables as shown above.

[image:]
Figure 16: When the program is compiled again the type-casting errors are gone but a linking error is found caused by using virtual class members.

[image:]
Figure 17: To correct this, a dummy cxa_pure_virtual function for the linker to work with it was created. This needed to be done as a traditional C function so the definition could be properly attributed.
[image:]
Figure 18: Final results when all the type-cast and hardware-serial errors were corrected.
The amount of flash memory used is high because of compiling the project with the –O0 option. It cannot be put enough emphasis that DURING ANY DEBUGGING THE –O OPTIO MUST BE 0 IN ORDER TO STEP THROGUH AND TRACE CODE. ANY OTHER OPTION WILL NOT DEBUG PROPERLY DUE TO OPTIMIZATIONS. For the release code this can be changed to –O2 or –Os.
IO toggle was made; since the standard setup() and loop() was used when creating the main program earlier, the code was enter in the methods below the main routine. The main routine will call to wiring.h which contained the definition of setup() and loop().
[image:]

ANALYSIS/CONCLUSION
During the first section of the lab, the steps could be followed well but in between there were some points that were not explained. Depending on what type of computer the user has, the software needs to be all placed in one location so it is easier to find the files. The AVR Studio can be used to build and compile C++ projects for the Arduino. In addition it can also be simulated and breakpoints added to program.

1

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image1.png

