
1 | P a g e

2 | P a g e

Atmel AVR External Interrupts

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 10: AVR Interrupt Programming in Assembly and C

10.3 Programming External Interrupts

10.5 Interrupt Programming in C

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

3 | P a g e

Contents

External Interrupts .. 4

ATmega328P External Interrupt Sense Control .. 6

ATmega328P External Interrupt Enable ... 7

When Will External Interrupts Be Triggered? ... 8

Pin Change Interrupts ... 9

How a Pin Change Interrupt Works .. 10

How To Enable a Pin Change Interrupt ... 11

ATmega328P Interrupt Processing (Review) .. 12

Programming the Arduino to Handle External Interrupts .. 13

Programming the Arduino to Handle Interrupts .. 14

Design Example – Switch Debounce ... 15

Switch Debounce Solutions .. 16

Switch Debounce Circuit – A Simple Digital Low Pass Filter ... 17

Switch Debounce Circuit – Questions ... 18

Appendix A How I Designed the Debounce Circuit ... 19

Logic Levels ... 19

Rise and Fall Times (Slew Rate) .. 20

4 | P a g e

EXTERNAL INTERRUPTS

 Review ATmega328P Interrupts Lecture Notes page 4 "Interrupt Basics"

 External Interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23..0 pins

 23 Pin Change Interrupts are mapped to the 23 General Purpose I/O Port Pins:
PCINT0 – PB0… PCINT7 – PB7

PCINT8 – PC0… PCINT14 – PC6 (PCINT15 – PC7)

PCINT16 – PD0… PCINT23 – PD7

5 | P a g e

ATmega328P Interrupt Vector Table

Vector
No

Program
Address

Source Interrupt Definition Arduino/C++ ISR() Macro
Vector Name

1 0x0000 RESET Reset

2 0x0002 INT0 External Interrupt Request 0 (pin D2) (INT0_vect)

3 0x0004 INT1 External Interrupt Request 1 (pin D3) (INT1_vect)

4 0x0006 PCINT0 Pin Change Interrupt Request 0 (pins D8 to D13) (PCINT0_vect)

5 0x0008 PCINT1 Pin Change Interrupt Request 1 (pins A0 to A5) (PCINT1_vect)

6 0x000A PCINT2 Pin Change Interrupt Request 2 (pins D0 to D7) (PCINT2_vect)

7 0x000C WDT Watchdog Time-out Interrupt (WDT_vect)

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match A (TIMER2_COMPA_vect)

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match B (TIMER2_COMPB_vect)

10 0x0012 TIMER2 OVF Timer/Counter2 Overflow (TIMER2_OVF_vect)

11 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event (TIMER1_CAPT_vect)

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A (TIMER1_COMPA_vect)

13 0x0018 TIMER1 COMPB Timer/Counter1 Compare Match B (TIMER1_COMPB_vect)

14 0x001A TIMER1 OVF Timer/Counter1 Overflow (TIMER1_OVF_vect)

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match A (TIMER0_COMPA_vect)

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match B (TIMER0_COMPB_vect)

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow (TIMER0_OVF_vect)

18 0x0022 SPI, STC SPI Serial Transfer Complete (SPI_STC_vect)

19 0x0024 USART, RX USART Rx Complete (USART_RX_vect)

20 0x0026 USART, UDRE USART, Data Register Empty (USART_UDRE_vect)

21 0x0028 USART, TX USART, Tx Complete (USART_TX_vect)

22 0x002A ADC ADC Conversion Complete (ADC_vect)

23 0x002C EE READY EEPROM Ready (EE_READY_vect)

24 0x002E ANALOG COMP Analog Comparator (ANALOG_COMP_vect)

25 0x0030 TWI 2-wire Serial Interface (I2C) (TWI_vect)

26 0x0032 SPM READY Store Program Memory Ready (SPM_READY_vect)

6 | P a g e

ATMEGA328P EXTERNAL INTERRUPT SENSE CONTROL

 Review ATmega328P Interrupts Lecture Notes page 8 "ATmega328P Interrupt Processing - Advanced -"

 The INT0 and INT1 interrupts can be triggered by a low logic level, logic change, and a falling or rising edge.

 This is set up as indicated in the specification for the External Interrupt Control Register A – EICRA as

defined in Section 12.2.1 EICRA of the Datasheet. The number “n” can be 0 or 1.

ISCn1 ISCn0 Arduino mode Description

0 0 LOW The low level of INTn generates an interrupt request

0 1 CHANGE Any logical change on INTn generates and interrupt request

1 0 FALLING The falling edge of INT0 generates an interrupt request

1 1 RISING The rising edge of INT0 generates an interrupt request

7 | P a g e

ATMEGA328P EXTERNAL INTERRUPT ENABLE

 All interrupts are assigned individual enable bits which must be written logic one together with the Global

Interrupt Enable bit in the Status Register (SREG) in order to enable the interrupt.

 The ATmega 328P supports two external interrupts which are individually enabled by setting bits INT1 and

INT0 in the External Interrupt Mask Register (Section 12.2.2 EIMSK).

 Let's look at an example. When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0

becomes set (one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.

 Alternatively, the flag can be cleared by writing a logical one to it. The EIFR register is within the I/O

address range (0x00 to 0x1F) of the Set Bit in I/O Register (SBI) Instruction. This flag is always cleared when

INT0 is configured as a level interrupt.

8 | P a g e

WHEN WILL EXTERNAL INTERRUPTS BE TRIGGERED?

 When the INT0 or INT1 interrupts are enabled and are configured as low level triggered (Type 21), the

interrupts will trigger as long as

1. the pin is held low.

2. the low level is held until the completion of the currently executing instruction

3. the level is held long enough for the MCU to completely wake-up (assuming it was asleep).

o Low level interrupt on INT0 and INT1 are detected asynchronously (no clock required). The I/O clock

is halted in all sleep modes except Idle mode. Therefore low level interrupts can be used for waking

the part from all sleep modes.

4. Among other applications, low level interrupts may be used to implement a handshake protocol.

 When the INT0 or INT1 interrupts are enabled and are configured as edge or logic change (toggle)

triggered, (Type 11) the interrupts will trigger as long as

1. the I/O clock is present.

o This implies that these interrupts cannot be used for waking up the part from sleep modes other

than Idle mode.

2. pulse lasts longer than one I/O clock period. Shorter pulses are not guaranteed to generate an

interrupt.

1 For more on Interrupt Types see ATmega328P Timer Interrupts “ATMEGA328P INTERRUPT PROCESSING – ADVANCED –“

9 | P a g e

PIN CHANGE INTERRUPTS

 In addition to our two (2) external

interrupts, twenty-three (23) pins can be

programmed to trigger an interrupt if

there pin changes state.

 These 23 pins are in turn divided into

three (3) interrupt groups (PCI 2:0)

corresponding to the three GPIO Ports B,

C, and D

 Each of the groups are assigned to one

pin change interrupt flag (PCIF) bit (2:0).

 A pin change interrupt flag will be set, if
the interrupt is enabled (see How to
Enable a Pin Change Interrupt), and any
pin assigned to the group changes state (toggles).

10 | P a g e

HOW A PIN CHANGE INTERRUPT WORKS

Here is how it works…

11 | P a g e

HOW TO ENABLE A PIN CHANGE INTERRUPT

In addition to our two (2) external interrupts, twenty-three (23) pins PCINT 23:16, 14:0 can be programmed to trigger an interrupt if

there pin changes state. These 23 pins are divided into three (3) interrupt groups (PCI 2:0) of eight (8), seven (7) and (8).

Consequently to enable and individual pin change interrupt 3 interrupt mask bits must be set to one (1).

1. The SREG global interrupt enable bit I

2. The pin change interrupt enable bit (PCIE 2:0) group the pin is assigned. Specifically, a pin change interrupt PCI2 will trigger if

any enabled PCINT23..16 pin toggles. A pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. A pin

change interrupt PCI0 will trigger if any enabled PCINT7..0 pin toggles.

3. The individual pin change interrupt enable mask bit assigned to the pin (PCINT 23:0) is set. These mask bits are located in the

three pin change mask registers assigned to each group.

12 | P a g e

ATMEGA328P INTERRUPT PROCESSING (REVIEW)

 When an interrupt occurs, the microcontroller completes the current instruction and stores the address of

the next instruction on the stack

 It also turns off the interrupt system to prevent further interrupts while one is in progress. This is done by

clearing the SREG Global Interrupt Enable I-bit.

 The Interrupt flag bit is cleared for Type 1 Interrupts only (see the next page for Type definitions).

 The execution of the ISR is performed by loading the beginning address of the ISR specific for that interrupt

into the program counter. The AVR processor starts running the ISR.

 Execution of the ISR continues until the return from interrupt instruction (reti) is encountered. The SREG

I-bit is automatically set when the reti instruction is executed (i.e., Interrupts enabled).

 When the AVR exits from an interrupt, it will always return to the interrupted program and execute one

more instruction before any pending interrupt is served.

 The Status Register (SREG) is not automatically stored when entering an interrupt routine, nor restored

when returning from an interrupt routine. This must be handled by software.

13 | P a g e

PROGRAMMING THE ARDUINO TO HANDLE EXTERNAL INTERRUPTS
2

 Stop compiler optimization of variables within an ISR by adding the volatile qualifier. This

keeps the current value in SRAM until needed.

const byte pin = 8; // green LED 0

volatile int state = LOW;

 Add jumps in the IVT to ISR routine, configure External Interrupt Control Register A (EICRA), and

enable local and global Interrupt Flag Bits.

 void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE); // protoshield button

}

 Write Interrupt Service Routine (ISR)

void blink()

{

 state = !state;

}

To disable interrupts globally (clear the I bit in SREG) call the noInterrupts() function. To once

again enable interrupts (set the I bit in SREG) call the interrupts() function.

2 Source: Arduino attachInterrupt

External

Interrupt 0 or 1

ISR

Interrupt Sense

Control (ISC)

http://arduino.cc/en/Reference/AttachInterrupt

14 | P a g e

PROGRAMMING THE ARDUINO TO HANDLE INTERRUPTS
3

 In the AVR-GCC environment upon which the Arduino language is built, the interrupt vector table (IVT) is

predefined to point to interrupt routines with predetermined names (see “ATmega328P Interrupt Vector

Table” on page 6).

 You create an ISR by using the Macro ISR() and these names.

#include <avr/interrupt.h>

ISR(ADC_vect)

{

 // user code here

}

 Now that you have defined the ISR you need to locally and globally enable it. Here are the relevant links for

learning how to complete your ISR definition.

o Global manipulation of the interrupt flag

o Gammon Software Solutions forum - Interrupts

o ISR() macro

3 Source: Arduino attachInterrupt

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.gammon.com.au/forum/?id=11488
http://forum.arduino.cc/index.php?topic=42153.0
http://arduino.cc/en/Reference/AttachInterrupt

15 | P a g e

DESIGN EXAMPLE – SWITCH DEBOUNCE

 When you press a button, its contacts will open and close many times before they finally stay in position.

This is known as contact bounce.

 Depending on the switch construction, this mechanical contact bounce can last up to 10 or 20 milliseconds.

This isn't a problem for lamps, doorbells and audio circuits, but it will play havoc to with our edge-triggered

interrupt circuitry.

Figure 2 Switch Bounce

 With respect to the waveform above, a switch debounce solution must be designed to filter out these

transitions.

16 | P a g e

SWITCH DEBOUNCE SOLUTIONS

 So how can we design a “Debounce Circuit” to filter out these transitions.

1. The lowest-cost solution requires no hardware. Specifically, we disable the external interrupt during the

switch bounce time. This solution has been implemented for the Arduino by Nick Gammon with Arduino

code provided here in the “Example code of a pump timer” section.

2. For some simple electrical solutions visit http://www.patchn.com/Debounce.htm.

3. For our solution, I added a D flip-flop which is clocked at a frequency less than 50 Hz (1/20 milliseconds).

This digital circuit acts as a low pass filter blocking the AVR interrupt circuitry from responding to any of

these additional edges.

http://www.gammon.com.au/forum/?id=11488
http://www.patchn.com/Debounce.htm

17 | P a g e

SWITCH DEBOUNCE CIRCUIT – A SIMPLE DIGITAL LOW PASS FILTER

 From the Pre-lab – Draw a waveform diagram with inputs

D and clk of the Flip-flop and output Q. For the clock

input, show two (2) clock cycles with a period of 10

milliseconds and a positive pulse with a width equal to 2

clock cycles. Assume the Arduino Duemilanove clock

frequency of 16 MHz. For the D input assume the switch

is initially pressed and that the input is at logic zero. Next

add the bounce waveform shown Figure 2. The switch

bounce should occur somewhere relative to the leading edge of the first clock signal. The exact phase

relationship of the switch bounce to the clock edge is left to you, but time scales must be the same between

the two (2) inputs. Based on these two inputs to the D Flip-flop draw output signal Q.

10 msec

Button

to FF D input

PORT D bit 5 output

to FF CLK input

FF Q output

to PIN D bit 2 input

18 | P a g e

SWITCH DEBOUNCE CIRCUIT – QUESTIONS

 Here is the push-button debounce circuit included with your proto-shield.

Figure 1 Debounce Circuit

 Questions…

1. After reset is applied, will the LED be ON or OFF?

2. Assuming the current into the D input of the Flip-flop is negligible, what current, if any, would flow through

the resistor when the button is pressed?

19 | P a g e

APPENDIX A HOW I DESIGNED THE DEBOUNCE CIRCUIT

Here is a real world problem that I considered while designing my Debounce circuit.

LOGIC LEVELS

Between logic 0 and logic 1 there is an undefined region4. The figure below shows TTL input and output voltage

levels corresponding to logic 1 and 0 (source: Theory of TTL Logic Family). Recommended Reading: Logic signal

voltage levels

4 http://www.interfacebus.com/voltage_threshold.html

http://www.tutorsglobe.com/homework-help/electrical-engneering/ttl-logic-family-74124.aspx
http://www.allaboutcircuits.com/vol_4/chpt_3/10.html
http://www.allaboutcircuits.com/vol_4/chpt_3/10.html
http://www.interfacebus.com/voltage_threshold.html

20 | P a g e

RISE AND FALL TIMES (SLEW RATE)

 Electrical signals have a finite period to transition through this region, technically known at rise and fall times

or slew rate5.

 The table below provides data for propagation delay and slew rate for each of the families listed. Don't allow

digital logic slew rates to be slower than what is specified by the data sheet. All digital logic families will

oscillate with slow rise times.

5 http://www.interfacebus.com/Logic_Family_Noise_Margin.html

http://www.interfacebus.com/Logic_Family_Noise_Margin.html

21 | P a g e

RISE AND FALL TIMES - CONTINUED

 For some micro-controller inputs rise and fall times can be no more than 20 nsec. If this specification is

violated the input may start to oscillate causing havoc within the device and ultimately destroying the input

gate structure of the receiving gate6.

 The input circuits of MOS devices, like our AVR micro-controller, can be characterized as capacitive in nature

(can be modeled to the first order by a capacitor). For some inputs this capacitance can be as great as 10 pF

(pico = 10-12). Now, let us assume an external pull-up resistor of 10 KΩ. Given this information we come up

with a “back of the envelope” calculated time constant (RC) of 100 nsec.

 Clearly, we have a problem. I solved this problem by adding a TTL device between the switch and the micro-

controller. The input of the 74ALS74 can be characterized as resistive in nature (can be modeled by a

resistor). Combined with a pull-up resistance (10 KΩ) the input problem is ameliorated.

 The output of the 74ALS74 TTL device goes directly to the input of the AVR micro-controller solving our slew

rate problem. This new faster circuit however introduces its own problems as discussed in the next section.

6 http://www.interfacebus.com/IC_Output_Slew_Rate.html

http://www.interfacebus.com/IC_Output_Slew_Rate.html

