
EE-444 Fall 2017

PWM Control With C++
Timer/Counter and PWM
This article is the second of a two part series on the AdaFruit Motor Shield. The first article
focused on a Software implementation of the Serial Peripheral Interface (SPI). This second
article in the series covers Fast Pulse Width Modulation.

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi
Chapter 5: Arithmetic, Logic Instructions, and Programs

Section 5.4: Rotate and Shift Instructions and Data Serialization
Chapter 7: AVR Programming in C

Section 7.5 Data Serialization in C
Chapter 11: AVR Serial Port Programming in Assembly and C
Section 17.1 SPI Bus Protocol

ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd Chapter 14 “16-bit

1 Thomas Forman

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd

EE-444 Fall 2017

Timer/Counter 1 with PWM”

Table of Contents

References
Speed Control or Fast PWM
Using the Motor Shield

Power
Program

Acknowledgment

References
1. ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd Chapter 18 “SPI -
Serial Peripheral Interface”

2. ATmega328P Serial Communications (located in the EE346 Lectures folder)
3. ATmega32U4 Datasheet (Link HERE)
4. TB6612FNG Datasheet

Prerequisite
It is assumed that students can configure GPIO on their own by reading data sheet information,
and an understanding of setting Pins as inputs and outputs is needed.
It is also assumed they have been exposed to basic C++ flow control methods/ functions for the
examples at the end.

Speed Control or Fast PWM
The speed of the DC motors is controlled using pulse-width-modulation (PWM). The idea of
PWM is to control the power to a motor using a high-frequency square wave. When the square
wave signal is high the motor is powered ON, and when the signal is low the power is turned
OFF. The speed of the motor is controlled by the fraction of time the controlling signal is ON
(duty cycle = Th/Tp %, where Th = time high and Tp = clock period). The Arduino can generate
square waves for PWM on digital pins 3, 5, 6, 9, 10, 11.

2 Thomas Forman

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd
http://www.csulb.edu/~hill/ee346/Lectures/
http://www.csulb.edu/~hill/ee346/Lectures/
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf
http://arduino.cc/en/Tutorial/PWM
http://arduino.cc/en/Tutorial/PWM
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogWrite

EE-444 Fall 2017

Before diving into the code let’s examine our Pin allocation. We will be using the 3Dot for
reference which uses the TB6612FNG dual motor driver. The image from the block diagram
shows that we have configured 2 motors where each motor has 3 control pins and a standby
(STBY) pin for the entire IC. If STBY is set low then the motors are not powered regardless of
the state of the other two pins. The pins attached to AIN1/2 and BIN1/2 are digital outputs that
control the rotation of the motor. The PWM inputs clearly must connect to a pin capable of a
PWM output to control the speed of the motor.

While the wiring is easy to understand, the code requires some explanation. It directly accesses
internal registers of the ATmega processor. The datasheet provides the information we need, so
let's dive in.

The ATmega32U4 processor has 4 timer/counter (TC) modules that can be used to generate a
PWM signal. They are numbered 0, 1, 3, and 4. I will use TCx convention from now on. Looking
at the block diagram again we see the PWMA and PWMB are associated with OC4D and OC4B
respectively. OC4X denotes an output compare with TC4. The 32U4 has a more extensive timer
system than the 328p and this timer (TC4) has 3 OCRs attached to it. Conveniently for us, both
of these utilize the same timer making configuration a little more straightforward.

The TC modules can be configured in various operating modes. We will investigate the
"Fast PWM", for our purposes. In “Fast PWM” the output pin is set high (1) each time the
counter transitions from the MAX value to BOTTOM value of the TCx. The line is then set low
(0) when the counter reaches the described comparison value, this generates the PWM and
therefore acts as the speed setting.

3 Thomas Forman

EE-444 Fall 2017

Take note though that TC4 in this microcontroller is actually a 10-bit timer. Meaning, if desired, a
1024 bit resolution could be achieved for more refined motor control. The OCRx however, is
only 8-bits long and will only compare to the low 8-bits of the timer giving an easy 256 bit
resolution which is consistent with arduino implementation. This means we can safely ignore the
high 2 -bits of the timer as far as PWM generation is concerned.

Read page 160 of the data sheet for more informations on using the timer in 10-bit.

The TC4 is a monster! It has 5 configuration registers attached to it.

For any PWM you need:

1. Enable Fast PWM Mode
2. An appropriate timer frequency and...
3. OCR configuration

Only the bits required for Fast PWM will be covered, many configuration bits will be skipped
over to keep the lecture consistent and digestible.

Enable PWM:

To enable PWM we will use Table 15-18:

We need to set the bits to match row #2.

PWM4x means we have to find a unique configuration bit for OC4D, and OC4D. The
WGM41:WGM0 pair is for all of TC4.

4 Thomas Forman

EE-444 Fall 2017

WGM Bits are in TCCR4D:

PWM B and D bits are found in TCCR4A and TCCR4C respectively.

We will come back to these registers later for additional configuration.

NOTE: Upon further reading the arduino defaults to a 125kHz- Phase correct mode at startup.
WGM1:0 = 0:1. Normally this level of detail is not needed because the embedded arduino
startup function “init()” found in “wiring.c” will initialize all the prescalers for you. This discussion
is provided to enable you to build PWM systems on your own without arduino at all in the future.

Frequency:

The arduino functions hide this from us, but the PWM signal we can use is limited by the motor
driver. Look at the TB3312FNG datasheet, from page 3 on the table “ Operating Ranges.”

5 Thomas Forman

EE-444 Fall 2017

The PWM frequency is limited to less than 100 kHz. Since we have an 8Mhz FIO we can
determine the prescaler needed to be within those limits.

808M
.1M =

This shows we need a minimum prescaler of 80, the closest power of 2 to that is 2^(7) or 128.
This configuration is found in TCCR4B.

Looking at table 15-14:

6 Thomas Forman

EE-444 Fall 2017

We will desire CS43-CS40 bit values of 0b1000 to set our 128 prescaler.

Be aware that if power is a big consideration that the timer is disabled until the prescaler is set.
Leaving the prescaler off as late as possible can save some power. In addition note that if
building a project in the arduino environment that all the timers are operating by default.

OCR Configuration

The comparison registers are identified as OCR4D and OCR4B. The OCR configuration
bits will gives us control over how we want the pin to change when the timer hits the provided
compare value.

We will need TCCR4A and TCCR4C again for these bits.

The COMnX (n is a letter, x is a bit number) bits do different things for different PWM modes.
We will be looking at the Fast PWM table.

7 Thomas Forman

EE-444 Fall 2017

This table / description is for COMAx but it the same for COMDx and COMBx in Fast PWM.

The “notted” pins do exactly what it says. If OC4B is set, then OC4B not pin is the opposite. We
will not be using them as they reside on separate pins that are not used for our motors PWM.
For example, !OC4D is on Pin PD6.

The description also says that for the PWM to work we need to set DDRD of the ports as
outputs. So we will be enable DDRD - PD7 and DDRB - PB6 from looking at the block diagram.

Our configuration for the motors will use COM4X1..0 = 0b10.

The last part of the configuration is setting the OCR threshold which will generate the PWM
signal. We will be working from OCR4D and OCR4B located here:

8 Thomas Forman

EE-444 Fall 2017

Write directly to these registers to augment your PWM duty cycle.

9 Thomas Forman

EE-444 Fall 2017

Example Outline:
Handling PWM in C++ will be divided into two functions(or sections).

1. Configure the timer and OCR
2. Set OCR value as needed to change PWM

void RobotPWM(){
// Configure Timer4 for PWMs
// Motor A on PD7 (OC4D)
// Motor B on PB6 (OC4B)
// Ignore 10-bit mode for ease of use

//Need to configure Timer4 for fast PWM
// PWM4D and PWM4B set with WGM4 1:0 = 0b00
//Setting WGM = 00
TCCR4D &= ~(_BV(WGM41) | _BV(WGM40));
// Set PD7 and PB6 as outputs
// I have also added digital pins since they are part of the same
system

// If i want the PWM then I want the digitals also

//MOTOR PINS
//Motor A PD6,4,7

DDRD |= _BV(PD7) | _BV(PD6) | _BV(PD4); // 0xD0
// Default to Low output
PORTD &= ~(_BV(PD7) | _BV(PD6) | _BV(PD4));

//Motor B PB5,6 and and STBY = PB4
DDRB |= _BV(PB6) | _BV(PB5) | _BV(PD4) ; //0x70
PORTB &= ~(_BV(PB6) | _BV(PB5 | _BV(PD4)));

//And for motor B PC6 BIN2
DDRC |= _BV(PB6) ; //0x40
PORTC &= ~(_BV(PB6));

//Setting PWM4B and COMB
TCCR4A |= (_BV(COM4B1)| _BV(PWM4B));
TCCR4A &= ~(_BV(COM4B1));
//Setting PWM4D and COMD

10 Thomas Forman

EE-444 Fall 2017

TCCR4C |= (_BV(COM4D1)| _BV(PWM4D));
TCCR4A &= ~(_BV(COM4D0));

//SetPrescaler - turn on timer
//Assumes *Mhz external with defult fuses (making Fio = 1Mhz)
//TB66612FNG says wants PWM Freq <= 100k
// Fio = 8Mhz
// 8M / 128 = 62.5kHz

//CS4 4:0 = 0b1000;
TCCR4B |= _BV(CS43);
TCCR4B &= ~(_BV(CS42)| _BV(CS41)|_BV(CS40)); // Clear prior settings
from arduino.
}

With the configuration ready we can make a function to set our PWM by change the OCR
threshold.

void setPWM(char Pin, uint8_t val){

 // Only using 8-bit mode so value is from 0-255 as normal.
 // This assumes proper values passed, if block should protect
from bad inputs
 //if (Pin == 'A'| Pin == 'B') (Pin == 'A') ? (OCR4D = val) :
(OCR4B = val) ;
 // looking at more stuff this ternary probably won’t work):

// wanted something more elegant that switch, but it works.
// would have to make own methods like arduino has it set up to be
really clean.
 switch (Pin){
 case 'A': // Due to ASCII, this is case sensitive,
change if you wish.
 OCR4D = val;
 break;

 case 'B':

 OCR4B = val;

 break;

default:

11 Thomas Forman

EE-444 Fall 2017

 Serial.println("Invalid Motor Pin");

 break;
 }
}

Additional Notes:
This is a great starter to understand building the PWM implementation from the ground up.
Ideally to avoid pin confusion(like with the Switch case) I would make a Motor object where the
pin is specific to that motor. This would also help make the code more readable.

12 Thomas Forman

