
EE346/444 Hill

1 | P a g e November 12, 2017

3DoT C++ Timer/Counter 4 with PWM

This article is on the motor control section of the 3DoT board using Timer/Counter 4 operating in Fast

PWM mode.

The AVR Microcontroller and Embedded Systems using Assembly and C
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 16: PWM Programming and DC Motor Control in AVR

ATMEL 8-bit AVR Microcontroller with 16/32K Bytes of ISP Flash and USB – ATmega32U4

Chapter 13 “8-bit Timer/Counter 0 with PWM,” Chapter 14 “16-bit Timers/Counters,” and Chapter 15

“10-bit High Speed Timer/Counter4.”

EE346/444 Hill

2 | P a g e November 12, 2017

Table of Contents
Motor Direction Control ... 4

Sample C++ Code to Configure GPIO Ports ... 6

Motor Speed Control .. 7

Overview ... 7

ATmega Timing Subsystem ... 7

ATmega32U4 Timing Subsystem ... 7

What is Fast Pulse Width Modulation ... 9

Fixed PWM Output Frequency .. 10

Timer/Counter 4 ... 10

Calculating the PWM Duty Cycle ... 10

10-bit Timer/Counter 4 Register ... 11

TC4H – Timer/Counter4 High Byte .. 11

TCNT4 – Timer/Counter4 .. 11

Configuring Timing/Counter4 ... 12

Step 1 – Enable Fast PWM mode .. 13

Timer/Counter4 Control Register D (Section 15.12.4) .. 13

Timer/Counter4 Control Register C (Section 15.12.3) ... 13

Timer/Counter4 Control Register A (15.12.1) ... 13

Step 2 – Define output waveform shape .. 14

Timer/Counter4 Control Register A and C – Comparator Output Mode bits 14

Timer/Counter4 Control Register C and A: C++ Code Example ... 14

Step 3 –Set an appropriate timer frequency ... 15

Timer/Counter4 Output Compare Register C (Section 15.12.10) correct mnemonic is OCR4C 15

Timer/Counter4 Control Register B (Section 15.12.2) ... 15

Timer/Counter4 Control Register B and Output Compare Register C: C++ Code Example 16

Step 4 –Set the duty cycle by configuring the OCR registers... 17

Calculating the PWM Duty Cycle ... 17

OCR4B – Timer/Counter4 Output Compare Register D (Section 15.12.9) ... 17

OCR4D – Timer/Counter4 Output Compare Register D (Section 15.12.11) 17

EE346/444 Hill

3 | P a g e November 12, 2017

Timer/Counter4 Output Compare Register: C++ Code Example .. 17

Fast PWM Assembly Code Example .. 19

Fast PWM C++ Code Example ... 20

Appendix A: Timer/Counter 4 Register Summary ... 22

Unused Registers .. 22

Timer/Counter4 Interrupt Mask and Flag Registers (14.10.17, 14.10.19) ... 22

Appendix B: Design Example – Timer/Counter 0 .. 24

8-bit Timer/Counter 0 Subsystem ... 24

Clock Source.. 25

Timing Terminology .. 25

Frequency ... 25

Period .. 25

Duty Cycle ... 25

Pulse Width Modulation ... 25

Waveform Generation Modes .. 26

Normal Mode .. 28

PWM Waveform Generation Modes .. 29

PWM Types ... 29

ATmega32U4 8-bit PWM Modes .. 30

Timer/Counter Control Register A (TCCR0A)... 34

Inverting versus Non-inverting Modes (COM0A1, COM0A0 and COM0B1, COM0A0) 34

Timer/Counter Control Register B (TCCR0B) ... 35

Timer/Counter Prescaler (CS02, CS01, CS00) .. 35

Force Output Compare A (FOC0A and FOC0B) .. 35

Appendix C: Motor Control Using ATmega32U4 16-bit Timer/Counter 1 ... 36

What is Fast Pulse Width Modulation ... 36

Fixed PWM Output Frequency .. 36

Timer/Counter 1 ... 36

Calculating the PWM Duty Cycle ... 37

Fast PWM Code... 37

Register Definitions ... 38

Timer/Counter 1 Registers .. 38

EE346/444 Hill

4 | P a g e November 12, 2017

Motor Direction Control

Figure 1 “Atmega32U4 to Motor Driver Interface” shows that we can configure 2 motors where each

motor has 3 control pins and a standby (STBY) pin for the entire IC. If STBY is set low then the motors are

not powered regardless of the state of the other two pins. The pins attached to AIN1/2 and BIN1/2 are

digital outputs that control the rotation of the motor. The PWM inputs are connect to a pins capable of

a PWM output to control the speed of the motor.

ATmega32U4
TB6612FNG Dual

Motor Driver

Left
Motor

Right
Motor

(ADC8) PD4

(ADC9)PD6

(ADC12) PB5

PC6

D6 (A7)

D4 (A6)

D12 (A11)

D5

D9 (A9)

PWMA

AIN2

AIN1

STBY

BIN1

BIN2

PWMB

D8 (A8)
(ADC11) PB4

(OC1B, OC4B, ADC13) PB6
D10 (A10)

6

5

4

3

2

1

0

Motors

MOTOR
A

MOTOR
B

(OC4D, ADC10) PD7

Figure 1 – Atmega32U4 to Motor Driver Interface

For the remainder of this article use Figure 1 “Atmega32U4 to Motor Driver Interface” to help you cross-

reference the tower of babel names used by Atmel, Arduino, and Toshiba (i.e., TB6612FNG).

To prevent damage to the internal circuitry of the TB6612FNG, the IC includes clamping diodes on the
inputs, a series resistor to limit in-rush current, and a weak pull-down resistor to keep the N-channel
MOSFET OFF (Figure 2a Input Circuit). To prevent damage to the output circuitry internal flyback (i.e.,
snubber, flywheel) diodes are included (Figure 2b Flyback Diodes). Here is one of many articles on how
to use a MOSFET as a Switch which goes into a little more details on these circuit elements.

Figure 2 – TB6612FNG Input and Output Circuits

The direction in which the motors turn are defined in Table 1 and illustrated in Figure 2 “TB6612FNG H-
Bridge states t1 to t5.” For example, to configure Motor A to turn clockwise (CW) you would want to set
the H-Bridge to state t1 (see Figure 3). This would be accomplished by setting PD6 = 1 and PD4 = 0 (see
Table 1 and Figure 1). To turn counter-clockwise (CCW) you would want to set the H-Bridge to state t5.
This would be accomplished by setting PD6 = 0 and PD4 = 1.

https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf
http://www.electronics-tutorials.ws/transistor/tran_7.html

EE346/444 Hill

5 | P a g e November 12, 2017

Table 1 TB6612FNG Motor Control Truth Table

Figure 3 TB6612FNG H-Bridge states t1 to t5

To prevent a momentary short between states, it is recommended that dead times t2 and t4 be
provided when switching between modes in the IC. It is unclear to the author if these modes are
provided by the IC or are the responsibility of the software designer. My best educated guess – it is the
responsibility of the software engineer.

EE346/444 Hill

6 | P a g e November 12, 2017

Figure 4 How to program switching between states to prevent short circuit conditions.

Sample C++ Code to Configure GPIO Ports

ATmega32U4
TB6612FNG Dual

Motor Driver

Left
Motor

Right
Motor

(ADC8) PD4

(ADC9)PD6

(ADC12) PB5

PC6

D6 (A7)

D4 (A6)

D12 (A11)

D5

D9 (A9)

PWMA

AIN2

AIN1

STBY

BIN1

BIN2

PWMB

D8 (A8)
(ADC11) PB4

(OC1B, OC4B, ADC13) PB6
D10 (A10)

6

5

4

3

2

1

0

Motors

MOTOR
A

MOTOR
B

(OC4D, ADC10) PD7

//MOTOR PINS

//Motor A PD6,4,7

DDRD |= _BV(PD7) | _BV(PD6) | _BV(PD4); // 0xD0

// Default to Low output

PORTD &= ~(_BV(PD7) | _BV(PD6) | _BV(PD4));

//Motor B PB5,6 and STBY = PB4

DDRB |= _BV(PB6) | _BV(PB5) | _BV(PD4); //0x70

PORTB &= ~(_BV(PB6) | _BV(PB5 | _BV(PD4)));

//And for motor B PC6 BIN2

DDRC |= _BV(PB6) ; //0x40

PORTC &= ~(_BV(PB6));

EE346/444 Hill

7 | P a g e November 12, 2017

Motor Speed Control

Overview

The speed of the DC motors is controlled using pulse-width-modulation (PWM). The idea of PWM is to

control the power to a motor using a high-frequency square wave. When the square wave signal is high

the motor is powered ON, and when the signal is low the power is turned OFF. The speed of the motor

is controlled by the fraction of time the controlling signal is ON (duty cycle = Th/Tp %, where Th = time

high and Tp = clock period). The Arduino UNO can generate square waves for PWM on digital pins 3, 5,

6, 9, 10, 11.

The speed of the motors A and B are controlled by changing the duty cycle of pins PWMA and PWMB

respectively. With reference to Figure 1 “Atmega32U4 to Motor Driver Interface,” the speed of motor A

will be controlled by Timer 4 register OC4D and motor B by Timer 4 register OC4B. The mnemonic OCnx

stands for Output Compare register nx, where n is the Timer number (0, 1, 3, and 4) and x is the

Compare register (Timer 4 has four (4) output compare registers designated A, B, C, and D). We will be

operating our timer using “Fast Pulse Width Modulation.” I will tell you more about these registers and

modes in the coming paragraphs.

ATmega Timing Subsystem
Most microcontrollers provide at least one port that has timer sub-circuitry capable of generating PWM

signals on a port pin. Typically, one just needs to configure the square-wave frequency and desired duty

cycle via a couple of registers. When enabled, the port pin will output a PWM signal that can be

demodulated in order to provide an approximation to an analog signal. In our design the characteristics

of the motor circuit act to demodulate the PWM signal.

ATmega32U4 Timing Subsystem
The ATmega32U4 processor has 4 timer/counter (TC) modules that can be used to generate a PWM

signal. They are numbered 0, 1, 3, and 4. I will use TCx convention from now on.

Timer/Counter0 is an 8-bit Timer/Counter module, with two independent Output Compare Units, and

with PWM support. The Arduino uses Timer 0 to implement the millis() function.

Timer/Counter1 and Timer/Counter3 are 16-bit Timer/Counter units with three independent double-

buffered Output Compare Units.

Timer/Counter4 is the only 10-bit high speed timer on the ATmega32U4 and has a lot of advanced

features, including a high precision mode, double buffering (no glitches), dead time (break before

make), fault protection with noise canceling (motor stall monitoring), and even support for brushless dc

motors. To keep things simple we will not be using any of these features.

Looking at Figure 1 “Atmega32U4 to Motor Driver Interface” again we see the PWMA and PWMB are

associated with OC4D and OC4B respectively. OC4X denotes an output compare with TC4. The 32U4 has

a more extensive timer system than the 328p and this timer (TC4) has 3 OCRs attached to it.

Conveniently for us, both of these utilize the same timer making configuration a little more

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FPWM&sa=D&sntz=1&usg=AFQjCNG_p3V4nQ_yk_SDFjFUuG8QN4O74g
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FPWM&sa=D&sntz=1&usg=AFQjCNG_p3V4nQ_yk_SDFjFUuG8QN4O74g
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogWrite&sa=D&sntz=1&usg=AFQjCNEHHqYhHKEKn_Nbi3OXaMt0NZuPRQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogWrite&sa=D&sntz=1&usg=AFQjCNEHHqYhHKEKn_Nbi3OXaMt0NZuPRQ
https://www.arduino.cc/en/Reference/Millis

EE346/444 Hill

8 | P a g e November 12, 2017

straightforward.

Take note though that TC4 in this microcontroller is actually a 10-bit timer. Meaning, if desired, a 1024

bit resolution could be achieved for more refined motor control. The OCRx however, is only 8-bits long

and will only compare to the low 8-bits of the timer giving an easy 256 bit resolution which is consistent

with arduino implementation. This means we can safely ignore the high 2 -bits of the timer as far as

PWM generation is concerned.

EE346/444 Hill

9 | P a g e November 12, 2017

What is Fast Pulse Width Modulation

The timing diagram for the fast PWM mode is shown in Figure 15-13. The counter is incremented until

the counter value matches the TOP value. The counter is then cleared at the following timer clock cycle.

The TCNTn value is in the timing diagram shown as a histogram for illustrating the single-slope

operation. The diagram includes the Waveform Output in non-inverted and inverted Compare Output

modes. The small horizontal line marks on the TCNTn slopes represent Compare Matches between

OCRnx and TCNTx. Figure 15-3 is true for Timer/Counter 4 operation. The only difference for

Timer/Counters 0, 1, and 3, is the mnemonic OCWnx, which is replaced simply by OCnx.

The Timer/Counter Overflow Flag (TOVn bit) is set each time the counter reaches TOP. In fast PWM

mode, the compare unit allows generation of PWM waveforms on the OCnx pins. In our case OC4D for

Motor A and OC4B for Motor B.

Table 15-1 Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0.

MAX The counter reaches its MAXimum value.

TOP The counter reaches the TOP value.

For Timer/Counter 4 the OCR4C holds the Timer/Counter TOP value, i.e. the clear on compare match
value. The Timer/Counter4 High Byte Register (TC4H) is a 2-bit register1 that is used as a common
temporary buffer to access the MSB bits of the Timer/Counter4 registers, if the 10-bit accuracy is used
(Section 15.2.3 Registers).

Figure 15-3 Fast PWM Mode, Timing Diagram

1 Enhanced PWM mode adds an additional 3rd bit to the TC4H register.

EE346/444 Hill

10 | P a g e November 12, 2017

Fixed PWM Output Frequency

Timer/Counter 42

For Timer/Counter 4 the PWM output frequency can be calculated by the following equation (Section

14.8.3).

Equation 1.0

The frequency fOC4X as defined by equation 1 is a function of the system clock (8 MHz), the prescaler,

and TOP. The N variable represents the prescale divider and is defined in TCCR4B CS43:CS40 (stopped, 1,

2, 4,…16384). For our design N = 1 (no prescaler). Our TOP is defined by OCR4C and is fixed at its default

value of 0xFF, with the 2 bits in TC4H set to zero.

fOC4X = fCLK / 256 = 8 MHz / 256 = 31.25 KHz ≃ 32 KHz

Calculating the PWM Duty Cycle

We will be operating our 10-bit timer/counter 4 as an 8-bit timer in Fast PWM mode.

 TOP will be defined as 0xFF = 25510

 The most significant 2-bits contained in register TC4H will always be zero.

 TCNT4 will be compared to OCR4D (Motor A) and OCR4B (Motor B).

 Therefore, the Duty Cycle = OCR4x/255, where x equals D or B

2 I believe the equation defined in Section 15.8.2 “Fast PWM Mode” is incorrect and have replaced with equation
used for calculating the frequency throughout the rest of the datasheet.

EE346/444 Hill

11 | P a g e November 12, 2017

10-bit Timer/Counter 4 Register

Timer 4 is a 10-bit timer/counter. Special considerations need to be taken when writing to or reading

from a 10-bit register. To write to a 10-bit register, write the most significant 2 bits to TC4H first,

followed by the least significant byte (for example TCNT4). The TC4 register is shared by all 10-bit

registers in Timer/Counter 4. One consequence of this common register, is that when you read a 10-bit

register, the most significant 2-bits are saved to TC4H. Consequently, any subsequent 8-bit write

operation to the least significant byte of a 10-bit register, will have this new TC4H value written to the

high order bits. Again, this potentially unintended consequence can be avoided by always writing to

TC4H first. For more on working with a 10-bit register read Atmel Document 7766 “8-bit AVR

Microcontroller with16/32K Bytes of ISP Flash and USB Controller,” Section 15.11 “Accessing 10-bit

Register.”

For our robots, the good news is that we never read a 10-bit register. Specifically, the Timer/Counter4

high byte (TC4H) will be always be kept at its default value of zero (0x00).

If you were wondering, TC410 (Bit 2) is an “optional” accuracy bit for 11-bit accesses in Enhanced PWM

mode. The enhanced PWM mode allows to get one more accuracy bit while keeping the frequency

identical to normal mode. For more information on this topic see Section 15.6.2 “Enhanced

Compare/PWM mode Timer/Counter 4” in the ATmega32U4 Datasheet.

TC4H – Timer/Counter4 High Byte

TCNT4 – Timer/Counter4

Although Timer 4 is a 10-bit timer/counter, we will be operating it as an 8-bit timer.

EE346/444 Hill

12 | P a g e November 12, 2017

Configuring Timing/Counter4

For our fast PWM implementation we need:

1. To enable the Fast PWM Mode

2. define output waveform shape

3. set an appropriate timer frequency and...

4. duty cycle by configuring the OCR registers

EE346/444 Hill

13 | P a g e November 12, 2017

Step 1 – Enable Fast PWM mode

Modes of operation supported by the Timer/Counter4 are: Normal mode (counter), Fast PWM Mode,

Phase and PWM6 Modes as defined in Table 15-19.

Table 15-19 Waveform Generation Mode Bit Description

We will be operating in the Fast PWM mode, so we need to set the bits to match row #2.

 PWM4x (PWM4x where x = D and B) is set in TCCR4A (bit 0 = 1) and TCCR4A (bit 0 = 1)

respectively.

 WGM41 and WGM40 TCCR4D bits 1 and 0 are cleared (default)

Timer/Counter4 Control Register D (Section 15.12.4)

 7654_3210

TCCR4D = 0b0000_0000 = 0x00

TCCR4D &= ~(_BV(WGM41) | _BV(WGM40));

Timer/Counter4 Control Register C (Section 15.12.3)

Timer/Counter4 Control Register A (15.12.1)

All bits shaded in blue are kept at their default value of zero (0).

EE346/444 Hill

14 | P a g e November 12, 2017

Step 2 – Define output waveform shape

Timer/Counter4 Control Register A and C – Comparator Output Mode bits

To simplify the definition of the Comparator Output Mode bits located in TCCRA and TCCR4C, I am going

to be define COM4D1:0 in TCCR4A. The discussion is directly applicable to the definition of

COM4B1:COM4B0 in TCC4C

Figure 15-9. Compare Match Output Unit, Schematic

Comparator D Output Mode (COM4D1:COM4D0) TCCR4A bits 3 and 2, control the behavior of the

Waveform Output (OCW4D) and the connection of the Output Compare pin (OC4D). If one or both of

the COM4D1:0 bits are set, the OC4D output overrides the normal port functionality of the I/O pin it is

connected to. The complementary OC4D output is connected only in PWM modes when the COM4D1:0

bits are set to “01”. Note that the Data Direction Register (DDR) bit corresponding to the OC4D pin must

be set in order to enable the output driver. The function of the COM4D1:0 bits depends on the PWM4D

and WGM40 bit settings. Table 15-17 shows the COM4D1:0 bit functionality when the PWM4D bit is set

to a Fast PWM Mode.

Table 15-17. Compare Output Mode, Fast PWM Mode

Timer/Counter4 Control Register C and A: C++ Code Example

 7654_3210

TCCR4C = 0b0000_1001 = 0x09

TCCR4A = 0b0010_0001 = 0x21

//Setting COMD and PWM4D

TCCR4C |= (_BV(COM4D1)| _BV(PWM4D));

TCCR4C &= ~(_BV(COM4D0));

TCCR4A |= (_BV(COM4B1)| _BV(PWM4B));

TCCR4A &= ~(_BV(COM4B1));

EE346/444 Hill

15 | P a g e November 12, 2017

Step 3 –Set an appropriate timer frequency

For Timer/Counter 4 the PWM output frequency can be calculated by the following equation (Section

14.8.3).

Equation 1.0

The frequency fOC4X as defined by equation 1 is a function of the system clock (8 MHz), the prescaler,

and TOP. The N variable represents the prescale divider and is defined in TCCR4B CS43:CS40 (stopped, 1,

2, 4,…16384). For our design N = 1 (no prescaler). Our TOP is defined by OCR4C and is fixed at its default

value of 0xFF, with the 2 bits in TC4H set to zero.

fOC4X = fCLK / 256 = 8 MHz / 256 = 31.25 KHz ≃ 32 KHz

Timer/Counter4 Output Compare Register C (Section 15.12.10) correct mnemonic is OCR4C

Timer/Counter4 Control Register B (Section 15.12.2)

TCCR4B bits 7 to 4 are kept at their default value of zero (0). As defined in Table 15-15, we set the clock

prescaler to divide by 1 by setting CS43 to CS40 equal to 00012.

Table 15-15. Timer/Counter4 Prescaler Select

EE346/444 Hill

16 | P a g e November 12, 2017

Timer/Counter4 Control Register B and Output Compare Register C: C++ Code Example

 7654_3210

TCCR4B = 0b0000_0001 = 0x01

OCR4C = 0xFF;

//CS4 4:0 = 0b0001;

TCCR4B |= _BV(CS40);

TCCR4B &= ~(_BV(CS43)| _BV(CS42)|_BV(CS41)); // Clear prior settings from Arduino.

EE346/444 Hill

17 | P a g e November 12, 2017

Step 4 –Set the duty cycle by configuring the OCR registers

Calculating the PWM Duty Cycle

As illustrated in Figure 15-4, the 8-bit Timer/Counter Output Compare Registers OCR4x (where x = B or
D) are compared with Timer/Counter4. On compare match the OC4x pin is cleared to 0 (see Table 15-17
Compare Output Mode, Fast PWM Mode). Write to this register to set the duty cycle of the output
waveform. A compare match will also set the compare interrupt flag OCF4B after a synchronization
delay following the compare event.

Figure 15-4. Output Compare Unit, Block Diagram

The Duty Cycle = OCR4x/255, where x equals D or B

OCR4B – Timer/Counter4 Output Compare Register D (Section 15.12.9)

OCR4D – Timer/Counter4 Output Compare Register D (Section 15.12.11)

Timer/Counter4 Output Compare Register: C++ Code Example

void setPWM(char Pin, uint8_t val){

// Only using 8-bit mode so value is from 0-255 as normal.

// This assumes proper values passed, if block should protect from bad inputs

//if (Pin == 'A'| Pin == 'B') (Pin == 'A') ? (OCR4D = val) : (OCR4B = val) ;

// looking at more stuff this ternary probably won’t work):

EE346/444 Hill

18 | P a g e November 12, 2017

// wanted something more elegant than switch, but it works.

// would have to make own methods like Arduino has it set up to be really clean.

switch (Pin){

 case 'A': // Due to ASCII, this is case sensitive, change if you wish.

 OCR4D = val;

 break;

 case 'B':

 OCR4B = val;

 break;

 default:

 Serial.println("Invalid Motor Pin");

 break;

 }

}

EE346/444 Hill

19 | P a g e November 12, 2017

Fast PWM Assembly Code Example

The following code example shows how to configure timer/counter 4 for Fast PWM operation, at a
frequency of 31.25 KHz.

Reset:

/* Test code for motor A */

 clr r0 // r0 = 0x00

 clr r1

 com r1 // r1 = OxFF

/* Test code for motors A and B */

 cbi PORTD, 7 // outputs 0 to Motor A PWM pin when timer/counter 4 disconnected

 cbi PORTB, 6 // outputs 0 to Motor B PWM pin when timer/counter 4 disconnected

 // see section 15.11 Accessing 10-bit Register

 sts TC4H, r0 // most significant 2-bits

 sts TCNT4, r0 // 10-bit write TC4H:TCNT4 = 0x000

 // frequency = (8MHz/prescaler)/OCR4C = 31.372 KHz (default)

 sts OCR4C, r1 // 10-bit write TC4H:OCR4C = 0x0FF

 // duty cycle = OCR4D/OCR4C = 100%

 sts OCR4D, r1 // 10-bit write TC4H:OCR4D = 0x0FF (Motor A)

 sts OCR4B, r1 // 10-bit write TC4H:OCR4B = 0x0FF (Motor B)

 sts TCCR4B, r0 // all configuration bits to default with prescalar = 0, OFF

 ldi r16, 0x09

 sts TCCR4A, r16 // clear to manually control Motors A PWMD

 ldi r16, 0x2

 sts TCCR4A, r16 // clear to manually control Motors B PWMB

 sts TCCR4D, r0 // mode = fast PWM (default)

end of initialization

Walk:

 push r16

 ldi r16, 0x01 // configure inversion mode, reset, dead time to default = 0

 sts TCCR4B, r16 // with prescaler = 1. Motors A and B Timer/Counter 4 ON

 pop r16

 ret

Stop:

 push r16

 clr r16 // configure in fast PWM mode with prescaler = 0

 sts TCCR4B, r16 // Motors A and B Timer/Counter 4 OFF

 pop r16

 ret

EE346/444 Hill

20 | P a g e November 12, 2017

Fast PWM C++ Code Example

Handling PWM in C++ will be divided into two functions(or sections).

1. Configure the Timer and OCR

2. Set OCR value as needed to change PWM

void RobotPWM(){

// Configure Motor GPIO Port Pins

//Motor A PD6,4,7

DDRD |= _BV(PD7) | _BV(PD6) | _BV(PD4); // 0xD0

// Default to Low output

PORTD &= ~(_BV(PD7) | _BV(PD6) | _BV(PD4));

//Motor B PB5,6 and STBY = PB4

DDRB |= _BV(PB6) | _BV(PB5) | _BV(PD4); //0x70

PORTB &= ~(_BV(PB6) | _BV(PB5 | _BV(PD4)));

//And for motor B PC6 BIN2

DDRC |= _BV(PB6) ; //0x40

PORTC &= ~(_BV(PB6));

// Configure Timer4 for PWMs

// Motor A on PD7 (OC4D)

// Motor B on PB6 (OC4B)

// Ignore 10-bit mode for ease of use

// Need to configure Timer4 for fast PWM

// PWM4D and PWM4B set with WGM4 1:0 = 0b00

// Setting WGM = 00

TCCR4D &= ~(_BV(WGM41) | _BV(WGM40));

// Set PD7 and PB6 as outputs

// I have also added digital pins since they are part of the same system

// If I want the PWM then I want the digitals also

//Setting PWM4B and COMB

TCCR4A |= (_BV(COM4B1)| _BV(PWM4B));

TCCR4A &= ~(_BV(COM4B1));

//Setting PWM4D and COMD

TCCR4C |= (_BV(COM4D1)| _BV(PWM4D));

TCCR4C &= ~(_BV(COM4D0)); Error in Thomas C++ Code

//SetPrescaler - turn on timer

//Assumes *Mhz external with default fuses (making Fio = 1Mhz)

//TB66612FNG says wants PWM Freq <= 100k

OCR4C = 0xFF; Missing in Thomas C++ Code

//CS4 4:0 = 0b0001; Error in Thomas C++ Code

TCCR4B |= _BV(CS40);

TCCR4B &= ~(_BV(CS43)| _BV(CS42)|_BV(CS41)); // Clear prior settings from Arduino.

}

With the configuration ready we can make a function to set our PWM by change the OCR

threshold.

void setPWM(char Pin, uint8_t val){

// Only using 8-bit mode so value is from 0-255 as normal.

// This assumes proper values passed, if block should protect from bad inputs

//if (Pin == 'A'| Pin == 'B') (Pin == 'A') ? (OCR4D = val) : (OCR4B = val) ;

// looking at more stuff this ternary probably won’t work):

EE346/444 Hill

21 | P a g e November 12, 2017

// wanted something more elegant than switch, but it works.

// would have to make own methods like Arduino has it set up to be really clean.

switch (Pin){

 case 'A': // Due to ASCII, this is case sensitive, change if you wish.

 OCR4D = val;

 break;

 case 'B':

 OCR4B = val;

 break;

 default:

 Serial.println("Invalid Motor Pin");

 break;

 }

}

EE346/444 Hill

22 | P a g e November 12, 2017

Appendix A: Timer/Counter 4 Register Summary

Timer/Counter4 is a monster with five (5) control registers for configuring the timer/counter.

 TCCR4A – Timer/Counter4 Control Register A

 TCCR4B – Timer/Counter4 Control Register B

 TCCR4C – Timer/Counter4 Control Register C

 TCCR4D – Timer/Counter4 Control Register D

 TCCR4E – Timer/Counter4 Control Register E

Two registers used to make the 10-bit timer/counter.

 TC4H – Timer/Counter4 High Byte

 TCNT4 – Timer/Counter4

Four output compare registers

 OCR4A – Timer/Counter4 Output Compare Register A

 OCR4B – Timer/Counter4 Output Compare Register B

 OCR4C – Timer/Counter4 Output Compare Register C

 OCR4D – Timer/Counter4 Output Compare Register D

Two register to support polling and interrupts

 TIMSK4 – Timer/Counter4 Interrupt Mask Register

 TIFR4 – Timer/Counter4 Interrupt Flag Register

And one register unique to timer/counter4

 DT4 – Timer/Counter4 Dead Time Value

Unused Registers

The following registers are not used in our application and are kept at their default values (0x00).

 TCCR4E – Timer/Counter4 Control Register E

 OCR4A – Timer/Counter4 Output Compare Register A

 TIMSK4 – Timer/Counter4 Interrupt Mask Register

 TIFR4 – Timer/Counter4 Interrupt Flag Register

 DT4 – Timer/Counter4 Dead Time Value

Timer/Counter4 Interrupt Mask and Flag Registers (14.10.17, 14.10.19)

The OCF4B and OCF4D flag bits in the TIFR4 register will be set on compare match. As currently

configured and defined in section “Timer/Counter4 Control Registers” the OCF4B and OC4D pins are

cleared to 0 on compare match.

EE346/444 Hill

23 | P a g e November 12, 2017

TIMSK4 address = (0x72)
TIFR4 address = 0x19 (0x39)

EE346/444 Hill

24 | P a g e November 12, 2017

Appendix B: Design Example – Timer/Counter 0

This section takes a closer look at ATmega32U4 timing subsystem. To simplify the discussion, I will

assume the use of an 8-bit Timer. This is a reasonable simplification because all 3DoT timer/counters are

programmed to operate as 8-bit timer/counters. In most design examples, I will further assume 8-bit

Timer 0 operating in one of four (4) PWM modes, with the output coming from an output compare

register (OCnx).

For example, when calculating the output frequency of one of our 6 PWM pins; in place of using the

more general form fOCnxPWM where:

f = frequency

OC = output compare pin

n = timer/counter number 0, 1, and 2

x = output from output compare register A or B

PWM = Pulse Width Modulation mode

I will say fOC0A. for the frequency of the 8-bit timer 0 output compare register A. This specific

design example translates nicely to the more general cases used to configure 16-bit

timer/counter 1 and 10-bit timer/counter 4 .

8-bit Timer/Counter 0 Subsystem

Figure 1 8-bit Timer/Counter 0 Subsystem Block Diagram

EE346/444 Hill

25 | P a g e November 12, 2017

Clock Source

All our design examples will assume operation of the ATmega32U4 within the context of the

Arduino system. Specifically, our system clock source is a crystal input XTAL1/TOSC1 and

XTAL2/TOSC2.

Figure 2 Arduino/ATmega32U4 System Clock

For this design implementation the following will always be true (The interested student is

invited to read Section 14.3 “Timer/Counter Clock Sources” in the ATmega32U4 datasheet for

why this is true).

clkSYS = clkI/O eq. 1

and therefore...

fCLK = fI/O = 16 MHz eq. 2

Timing Terminology

Frequency

The number of times an event repeats within a 1-second period. The unit of frequency is Hertz,

or cycles per second. For example, a sinusoidal signal with a 60 Hz frequency means that a full

cycle of a sinusoid signal repeats itself 60 times each second.

Period

The flip side of a frequency is a period. If an event occurs with a rate of 60 Hz, the period of that

event is 16.67 ms.

Duty Cycle

Duty cycle is defined as the percentage of one period a signal is ON.

Pulse Width Modulation

Several modulation methods have been developed for applications that require a digital

EE346/444 Hill

26 | P a g e November 12, 2017

representation of an analog signal. One popular and relevant scheme is pulse width modulation

(PWM) in which the instantaneous amplitude of an analog signal is represented by the width of

periodic square wave. For example, consider the signals depicted in Fig. 3. Notice, the PWM

version of the signal has a fixed frequency defining the point when a pulse begins. During the

period of an individual pulse, the signal remains high for an amount of time proportional to the

amplitude of the analog signal.

Figure 3 An example analog signal and a pulse width modulated representation.

source: http://en.wikipedia.org/wiki/Pulse-width_modulation

Bottom, Max Top

Waveform Generation Modes

On the ATmega32U4, three waveform generation bits exist within the two

timer/counter control registers. Four of the eight possible waveform generation

modes involve PWM waveform outputs, two of which are considered fast PWM

while the remaining two are called phase-correct PWM.

Table 1 Waveform Generation Mode Bit Description

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPulse-width_modulation&sa=D&sntz=1&usg=AFQjCNHEclhukBmHvSV-LUkNB9qHG6UXsw

EE346/444 Hill

27 | P a g e November 12, 2017

Notes:

1. MAX = 0xFF

2. BOTTOM = 0x00

3. In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in

the same timer clock cycle as the TCNT0 becomes zero.

4. Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a match.

A match will set the Output Compare Flag (OCF0A or OCF0B) at the next

timer clock cycle.

EE346/444 Hill

28 | P a g e November 12, 2017

Normal Mode

Figure 4 Normal Mode

EE346/444 Hill

29 | P a g e November 12, 2017

PWM Waveform Generation Modes

PWM Types

Figure 5 Three types of PWM signals (blue): leading edge modulation (top), trailing edge

modulation (middle) and centered pulses (both edges are modulated, bottom). The green lines are the

sawtooth waveform (first and second cases) and a triangle waveform (third case) used to generate the

PWM waveforms using the intersective method.

Four types of pulse-width modulation (PWM) are possible:

1. The tail edge can be fixed and the lead edge modulated. ATmega32U4 Fast PWM inverting

modes 3 and 7.

2. The lead edge can be fixed and the tail edge modulated. ATmega32U4 Fast PWM non-inverting

modes 3 and 7.

3. The pulse center may be fixed in the center of the time window and both edges of the pulse

moved to compress or expand the width. ATmega32U4 PWM Phase Correct modes 1 and 5.

4. The frequency can be varied by the signal, and the pulse width can be constant. However, this

method has a more-restricted range of average output than the other three. ATmega32U4 CTC

mode 2

Note: ATmega32U4 modes 4 and 6 are reserved (i.e., undefined)

EE346/444 Hill

30 | P a g e November 12, 2017

ATmega32U4 8-bit PWM Modes

Shown in Fig. 6 and Fig. 7 are the four different output waveforms given the specified

waveform configurations.

Timer Modes 3 and 1

Figure 6 Non-inverting Timer Modes 3 and 1

In general, the PWM generation circuitry operates based on the 8-bit or 16-bit count register

TCNT which updates its current value every time there is a clock pulse. As long as the TCNT

value is below the value stored in the output compare register OCRnA or OCRnB, then the

associated output pin OCnA or OCnB will remain in a specific state, for example, set high. Once

the TCNT value becomes greater than the compare register value, the output pin will switch to

the opposite state, for example clear low. This operation will continue until the timer is

disabled.

Mode 3 Fast PWM

The first output mode shown in Fig. 6(a) represents the waveforms generated given a fast PWM

setting where the TOP value is fixed at the maximum 8-bit value of 255. In this mode, two

different output compare register values can be set independent of each other, each affecting a

different output pin (OCnA, OCnB). For our design example, two separate PWM waveforms may

be generated on pin 17 (PB3 MOSI/OC2A) and pin 5 (PD3 OC2B/INT1).

EE346/444 Hill

31 | P a g e November 12, 2017

From Figure 1 “8-bit Timer/Counter 0 Subsystem Block Diagram” it is seen that:

fT0 = fI/O /N eq. 3

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). This will be

covered in more detail in the Register section of this document.

Given that in this PWM setting (mode 3) that the TOP value is fixed at the maximum 8-bit value

of 255 and that the OC0B output is changed on the next clock cycle it can further be shown

that:

 fOC0B = fT0 / 256 eq. 4

Combining equations 1, 3, and 4 we see that the PWM frequency for the output can be

calculated by the following equation:

 fOC0B = fCLK / N*256 eq. 5

The general form given by the equation:

 eq. 6 (Section 17.7.3 Fast PWM Mode)

The 3DoT motor design sets N = 1:

fOC0B = fCLK / 256 = 8 MHz / 256 = 31.25 KHz ≃ 32 KHz eq. 7

AFMotor

To get sidetracked for a moment. In the AFMotor header file (i.e., C:\Program

Files\arduino-0022\libraries\AFMotor) you will find the following definitions:

#define MOTOR12_64KHZ _BV(CS20) // no prescale

where CS20 is further defined as equal to zero, and therefore:

MOTOR12_64KHZ = 0b00000001

Here is the line of code that instantiates the Adafruit motor shield

AF_DCMotor motor(2, MOTOR12_64KHZ); // create motor #2, 64KHz pwm

The first parameter is used to set the static property motornum. The second parameter

(freq) is used to initialize Timer/Counter Configuration Register TCCR2B.

EE346/444 Hill

32 | P a g e November 12, 2017

TCCR2B = freq & 0x7;

Putting this all together we have the prescalar set to 1 (no prescalar) and a corresponding

output frequency of approximatly 64 KHz. Please read the companion lecture “Adafruit Motor

Shield - Part 2” for more information.

The period of the PWM waveform is therefore TOC0B = 256/fCLK, which is a little more than half

the period of the phase-correct version (i.e., it is faster) - which brings us to the next section.

Mode 1 Phase Correct PWM

The second output mode shown in Fig. 6(b) represents the waveforms generated given the

phase-correct PWM setting where the TOP value is also fixed at the maximum 8-bit value of

255. As in the fast PWM case, two different output compare register values can be set

independent of each other, each affecting their own output pin. As can be seen, this mode

alters the TCNT register behavior in that once the counter reaches the TOP value of 255, it

begins counting backwards toward 0. The benefit has to do with the phase of the modulated

carrier. In particular, notice the narrower pulses of OCnB as compared to that of OCnA in both

Fig. 6(a-b). In the fast PWM non-inverted case, the front edges line up, whereas in the phase-

correct case, the center of the pulses line up; that is, the phase of the OCnA and OCnB

waveforms are equivalent.

The PWM frequency for the output can be calculated by the following equation:

 Section 17.7.4 Phase Correct PWM Mode

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). This will be

covered in more detail in the Register section of this document. For our design example we will

set N = 1.

fOC0B = fCLK / 510 = 8 MHz / 510 = 15.686 KHz

The period of the PWM waveform is therefore TOC0B = 510/fCLK, and the period of the phase

correct PWM waveform is nearly doubled from that of the fast PWM waveform.

You may be asking why 510 and not 512 (2 x 256)? In the fast PWM case, the counter follows

the sequence {0, 1, ..., 254, 255, 0}, which means there are 256 values in a single period. In the

phase-correct case, the counter follows the sequence {0, 1, ..., 254, 255, 254, ..., 1, 0}, which

means there are (510 = 255 + 255) values in a single period.

EE346/444 Hill

33 | P a g e November 12, 2017

Timer Modes 7 and 5

The final two output modes shown in Fig. 7 represent the fast and phase-correct PWM

waveforms when the TOP value is set to the 8-bit value stored in OCRnA.

Figure 7 Non-inverting Timer Modes 7 and 5

Both of these modes effectively disable the OCnA pin functionality at the benefit of increasing

the PWM frequency dramatically. In both cases, the TCNT register will count up to the OCRnA

value, and then either reset to 0 or start counting down toward 0. The only comparison that

matters is that to OCRnB, which will affect the OCnB pin as in the previous cases. One

significant impact is that for a value of X loaded into OCRnA, the total resolution of the duty

cycle output is reduced from 256 to X + 1 for fast PWM and 510 to 2X, where X is a 8-bit

number.

Exercise: Write the equation for fOC0B with prescale factor N (1, 8, 32, 64, 128, 256, or 1024) for

both Modes 7 and 5.

EE346/444 Hill

34 | P a g e November 12, 2017

Registers

Timer/Counter Control Register A (TCCR0A)

Inverting versus Non-inverting Modes (COM0A1, COM0A0 and COM0B1, COM0A0)

Compare Output Mode bits (COM0A1 and COM0A0 -- Timer/Counter 0 Output Compare Register A

used as an example) define if the mode is non-inverting (COM0A1 = 1, COM0A0 = 0) or

inverting (COM0A1 = 1, COM0A0 = 1).

EE346/444 Hill

35 | P a g e November 12, 2017

Timer/Counter Control Register B (TCCR0B)

Timer/Counter Prescaler (CS02, CS01, CS00)

Figure 17-12 Prescaler for Timer/Counter0

Table 17-9 Clock Select Bit Description

Force Output Compare A (FOC0A and FOC0B)

The FOC0A and FOCB bits are only active when the WGM bits specify a non-PWM mode.

EE346/444 Hill

36 | P a g e November 12, 2017

Appendix C: Motor Control Using ATmega32U4 16-bit Timer/Counter 1

What is Fast Pulse Width Modulation

The timing diagram for the fast PWM mode is shown in Figure 15-13. The counter is incremented until

the counter value matches the TOP value. The counter is then cleared at the following timer clock cycle.

The TCNTn value is in the timing diagram shown as a histogram for illustrating the single-slope

operation. The diagram includes the Waveform Output in non-inverted and inverted Compare Output

modes. The small horizontal line marks on the TCNTn slopes represent Compare Matches between

OCRnx and TCNTx. Figure 15-3 is true for Timer/Counter 4 operation. The only difference for

Timer/Counters 0, 1, and 3, is the mnemonic OCWnx, which is replaced simply by OCnx.

Table 15-1 Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0.

MAX The counter reaches its MAXimum value.

TOP The counter reaches the TOP value.

For Timer/Counter 1 the TOP value is defined by the OCR1A 16-bit register or given a fixed value of
0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7).

Figure 15-3 Fast PWM Mode, Timing Diagram

Fixed PWM Output Frequency

Timer/Counter 1

For Timer/Counter 1 the PWM output frequency can be calculated by the following equation (Section

14.8.3).

EE346/444 Hill

37 | P a g e November 12, 2017

Equation 1.0

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). For our design N = 1 (no

prescaler). Our TOP is fixed at 0xFF.

fOC2B = fCLK / 256 = 8 MHz / 256 = 31.25 KHz ≃ 32 KHz

Calculating the PWM Duty Cycle

We will be operating all our timer/counters as 8-bit timers in Fast PWM mode.

 For all timers TOP will be defined as 0xFF

 For 16-bit timer/counter 1

o The most significant 8-bits contained in TCNT1H will always be zero.

o TCNT1L will be compared to OCR1AL

o Therefore, the Duty Cycle = OCR1AL/255

Fast PWM Code

The following code example shows how to configure the 16-bit timer/counter 1 and 10-bit
timer/counter 4 for Fast PWM operation, at a frequency of 31.25 KHz.

Reset:

/* Motor Test Code */

 clr r0 // r0 = 0x00

 clr r1

 com r1 // r1 = OxFF

 sts TCNT1H, r0 // most significant 8-bits (write to TEMP register)

 sts TCNT1L, r0 // 16-bit write TCNT1H:TCNT1L = TEMP:TCNT1L = 0x0000

 // duty cycle = OCR1AL/0xFF = 100%

 sts OCR1AL, r0 // 16-bit write OCR1AH:OCR1AL = TEMP:OCR1AL = 0x00FF)

 ldi r16, 0x81 // clear output on compare match, configure in fast PWM

 sts TCCR1A, r16

 ldi r16, 0x08 // configure in fast PWM mode with prescaler = 0 OFF

 sts TCCR1B, r16

 sts TIMSK1, r0 // disable local timer/counter1 output compare match

 // interrupt enable. Enabled by Arduino bootloader for

 // servo library on reset.

end of initialization

Walk:

 push r16

 ldi r16, 0x09 // configure in fast PWM mode

 sts TCCR1B, r16 // with prescaler = 1. Motor A Timer/Counter 1 ON

 pop r16

 ret

Stop:

 push r16

 clr r16 // configure in fast PWM mode with prescaler = 0

 sts TCCR1B, r16 // Motor A Timer/Counter 1 OFF

 pop r16

 ret

EE346/444 Hill

38 | P a g e November 12, 2017

Register Definitions

Timer/Counter 1 Registers

Timer 1 is a 16-bit timer/counter. Special considerations need to be taken when writing to or reading

from a 16-bit register. To do a 16-bit write, the high byte must be written before the low byte (see

Figure 14-2). For a 16-bit read, the low byte must be read before the high byte. For more on working

with a 16-bit register read Atmel Document 7766 “8-bit AVR Microcontroller with16/32K Bytes of ISP

Flash and USB Controller,” Section 14.2 “Accessing 16-bit Register.”

Figure 14-2 TEMP High byte Register

For our robots, the good news is that we never read a 16-bit register. Specifically, the Timer/Counter1

high byte (TCNT1H) will be always be kept at its default value of zero (0x00).

Timer/Counter 1

As previously mentioned, we will only be working with TCNT1L (TCNT1H = 0x00).

Timer/Counter1 Output Compare Register A (Section 14.10.9)

The 8-bit Timer/Counter Output Compare Register A contains data to be continuously compared with

Timer/Counter1. Write to register OCR1AL to set the duty cycle of the output waveform. A compare

match will also set the compare interrupt flag OCF1A after a synchronization delay following the

compare event.

EE346/444 Hill

39 | P a g e November 12, 2017

Timer/Counter1 Control Register A and B (14.10.1, 14.10.3)

 76543210

TCCR1A = 0b10000001 = 0x81

 76543210

TCCR1B = 0b00001001 = 0x09

Timer/Counter 1 Comparator A Output Mode (COM1A1:COM1A0) TCCR1A bits 7 and 6, control the

behavior of the Output Compare pin (OC1A) as defined in Table 14-3. For Fast PWM modes the

COM1A1:0 bits are set to “102”.

Table 14-3. Compare Output Mode, Fast PWM

TCCR1A bits 5 to 4 and TCCR1B bits 7 to 5 are kept at their default value of zero (0).

Timer/Counter 1 Waveform Generation Mode (WGM13:0) TCCR1A bits 1 and 0, and TCCR1B bits 4 and

3 configure the timer/counter for operation in one of 16 modes as defined in Table 14-5. To configure as

a “Fast PWM, 8-bit” timer the WGM13:0 bits are set to “01012”.

Table 14-5. Waveform Generation Mode Bit Description

EE346/444 Hill

40 | P a g e November 12, 2017

Timer/Counter 1 Clock Select (CS12:0) TCCR1B bits 2, 1, and 0 set the clock prescaler as defined in

Table 14-6. To run at the frequency of the system clock (no prescaling) the CS12:0 bits are set to “0012.”

Table 14-6. Clock Select Bit Description

Timer/Counter1 Interrupt Mask and Flag Registers (14.10.17, 14.10.19)

When are the motors off?

As discussed in section “Timer/Counter1 Output Compare Register A” the OCF1A flag bit in the TIFR1

register will be set on compare match. As currently configured and defined in section “Timer/Counter1

Control Register A and B” the OC1A pin is cleared to 0 on compare match. Consequently, the motors will

be turned off.

EE346/444 Hill

41 | P a g e November 12, 2017

TIMSK1 address = (0x6F)
TIFR1 address = 0x16 (0x36)

The OCF1 flag is set in the timer clock cycle after the counter (TCNT1 value matches the Output

Compare Register A (OCR1A). OCF1A is automatically cleared when the Output Compare Match A

Interrupt Vector is executed. Alternatively, OCF1A can be cleared by writing a logic one to its bit

location.

Unused Registers

The following registers are not used in our application and are kept at their default values (0x00).

 TCCR1C – Timer/Counter1 Control Register C

 TCNT1H – Timer/Counter1 High Byte

 OCR1B – Timer/Counter1 Output Compare Register A

 OCR1C – Timer/Counter1 Output Compare Register B

 ICR1H and ICR1L – Input Capture Register 1

